Different Oviposition Strategies of Closely Related Damselfly Species as an Effective Defense against Parasitoids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.05/2.1.00/03.0100 (IET)
Institute of Environmental Technologies, Structural Funds of the European Union
LO1208
National Programme for Sustainability I of the Czech Republic
18-24425S
Grant Agency of the Czech Republic
PubMed
30634623
PubMed Central
PMC6358902
DOI
10.3390/insects10010026
PII: insects10010026
Knihovny.cz E-zdroje
- Klíčová slova
- Odonata, cost of reproduction, damselfly life history, egg mortality, egg parasitoid, oviposition strategy, trade-off,
- Publikační typ
- časopisecké články MeSH
Parasitoidism is one of the main causes of insect egg mortality. Parasitoids are often able to detect eggs using semiochemicals released from eggs and disturbed plants. In response, female insects adopt a wide variety of oviposition strategies to reduce the detectability of eggs and subsequent mortality. We evaluated the proportion of parasitized and undeveloped eggs of three common damselfly species from the family Lestidae, the most diverse group of European damselflies, in terms of oviposition strategies, notably clutch patterning and the ability to utilize oviposition substrates with different mechanical properties. We assumed that higher costs associated with some oviposition strategies will be balanced by lower egg mortality. We found that the ability of Chalcolestes viridis to oviposit into very stiff substrates brings benefit in the form of a significantly lower rate of parasitoidism and lower proportion of undeveloped eggs. The fundamentally different phenology of Sympecma fusca and/or their ability to utilize dead plants as oviposition substrate resulted in eggs that were completely free of parasitoids. Our results indicated that ovipositing into substrates that are unsuitable for most damselfly species significantly reduces egg mortality. Notably, none of these oviposition strategies would work unless combined with other adaptations, such as prolonging the duration of the prolarval life stage or the ability to oviposit into stiff tissue.
Zobrazit více v PubMed
Siva-Jothy M.T., Gibbons D.W., Pain D.D.J. Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behav. Ecol. Sociobiol. 1995;37:39–44. doi: 10.1007/BF00173897. DOI
Rantala M.J., Ilmonen J., Koskimäki J., Suhonen J., Tynkkynen K. The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat. Ecol. 2004;38:77–82. doi: 10.1023/B:AECO.0000021005.22624.16. DOI
Capinera J.L. Encyclopedia of Entomology. Springer; Berlin, Germany: 2008.
Suhling F., Sahlén G., Kalkman V., Gorb S., Dijkstra K.-D.B., Van Tol J. Odonata. In: Thorp J., Rogers C., Tockner K., editors. Thorp and Covich’s Freshwater Invertebrates. Academic Press; New York, NY, USA: 2015. pp. 893–932.
Corbet P.S. Dragonflies: Behaviour and Ecology of Odonata. Harley Books, Colchester. Harley Books; Colchester, UK: 1999.
Moisan P., Labandeira C.C., Matushkina N.A., Wappler T., Voigt S., Kerp H. Lycopsid-arthropod associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012;344–345:6–15. doi: 10.1016/j.palaeo.2012.05.016. DOI
Labandeira C.C. Early History of Arthropod and Vascular Plant Associations. Annu. Rev. Early Planet. Sci. 1998;26:329–377. doi: 10.1146/annurev.earth.26.1.329. DOI
Matushkina N.A., Gorb S. Mechanical properties of the endophytic ovipositor in damselflies (Zygoptera, Odonata) and their oviposition substrates. Zoology. 2007;110:167–175. doi: 10.1016/j.zool.2006.11.003. PubMed DOI
Matushkina N.A., Lambret P., Gorb S. Keeping the golden mean: Plant stiffness and anatomy as proximal factors driving endophytic oviposition site selection in a dragonfly. Zoology. 2016;119:474–480. doi: 10.1016/j.zool.2016.03.003. PubMed DOI
Matushkina N.A., Gorb S.N. Stylus of the odonate endophytic ovipositor: a mechanosensory organ controlling egg positioning. J. Insect Physiol. 2002;48:213–219. doi: 10.1016/S0022-1910(01)00166-4. PubMed DOI
Matushkina N.A., Lambret P.H. Ovipositor morphology and egg laying behaviour in the dragonfly Lestes macrostigma (Zygoptera: Lestidae) Int. J. Odonatol. 2011;14:69–82. doi: 10.1080/13887890.2011.568190. DOI
Martens A. Initial preference of oviposition sites: Discrimination between living and dead plant material in Sympecma fusca and Coenagrion caerulescens (Odonata: Lestidae, Coenagrionidae) Eur. J. Entomol. 2001;98:121–123. doi: 10.14411/eje.2001.021. DOI
Matushkina N.A., Gorb S. Patterns of endophytic egg-sets in damselflies (Odonata, Zygoptera) Vestn. Zool. 2000;14:152–159.
Jödicke R. Die Binsenjungfern und Winterlibellen Europas: Lestidae. Westarp Wissenschaften; Magdeburg, Germany: 1997. Die Neue Brehm-Bücherei; Bd. 631, Die Libellen Europas-Band 3)
Matushkina N.A., Buy D., Lambret P. Egg clutch patterning in Lestes virens (Odonata, Lestidae) with evolutionary emphasis on endophytic oviposition in lestid dragonflies. Insect Sci. 2016;23:893–902. doi: 10.1111/1744-7917.12230. PubMed DOI
Parker G.A., Courtney S.P. Models of clutch size in insect oviposition. Theor. Popul. Biol. 1984;26:27–48. doi: 10.1016/0040-5809(84)90022-4. DOI
Lancaster J., Downes B.J. Aquatic Entomology. Volume 285 Oxford University Press; Oxford, UK: 2013.
Chiappini E., Salerno G., Berzolla A., Iacovone A., Cristina Reguzzi M., Conti E. Role of volatile semiochemicals in host location by the egg parasitoid Anagrus breviphragma. Entomol. Exp. Appl. 2012;144:311–316. doi: 10.1111/j.1570-7458.2012.01290.x. DOI
Manrique V., Jones W.A., Williams L.H., Bernal J.S. Olfactory responses of Anaphes iole (Hymenoptera: Mymaridae) to volatile signals derived from host habitats. J. Insect Behav. 2005;18:89–104. doi: 10.1007/s10905-005-9349-5. DOI
Cronin J.T., Strong D.R. Dispersal-Dependent Oviposition and the Aggregation of Parasitism. Am. Nat. 1999;154:23–36. doi: 10.1086/303221. PubMed DOI
Cronin J.T. Habitat edges, within-patch dispersion of hosts, and parasitoid oviposition behavior. Ecology. 2009;90:196–207. doi: 10.1890/08-0208.1. PubMed DOI
Hirayama H., Kasuya E. Oviposition depth in response to egg parasitism in the water strider: High-risk experience promotes deeper oviposition. Anim. Behav. 2009;78:935–941. doi: 10.1016/j.anbehav.2009.07.019. DOI
Amano H., Hayashi K., Kasuya E. Avoidance of egg parasitism through submerged oviposition by tandem pairs in the water strider, Aquarius paludum insularis (Heteroptera: Gerridae) Ecol. Entomol. 2008;33:560–563. doi: 10.1111/j.1365-2311.2008.00988.x. DOI
Harabis F., Dolny A., Helebrandova J., Ruskova T. Do egg parasitoids increase the tendency of Lestes sponsa (Odonata: Lestidae) to oviposit underwater? Eur. J. Entomol. 2015;112:63–68. doi: 10.14411/eje.2015.017. DOI
Lambret P., Besnard A., Matushkina N.A. Plant preference during oviposition in the endangered dragonfly Lestes macrostigma (Odonata: Zygoptera) and consequences for its conservation. J. Insect Conserv. 2015;19:741–752. doi: 10.1007/s10841-015-9796-z. DOI
Dolný A., Harabiš F., Bárta D. Vážky (Insecta: Odonata) České Republiky. Atlasy; Praha, Czech Republic: 2016.
Matushkina N., Gorb S. A Check-list of Substrates for Endophytic Oviposition of Some European Dragonflies (Insecta: Odonata) Kharkov Entomol. Soc. Gaz. 2003;10:108–118.
Dijkstra K.-D.B., Lewington R. Field Guide to the Dragonflies of Britain and Europe including Western Turkey and North-Western Africa. British Wildlife Publishing; Milton on Stour, UK: 2006.
Harabiš F. The value of terrestrial ecotones as refuges for winter damselflies (Odonata: Lestidae) J. Insect Conserv. 2016;20:971–977. doi: 10.1007/s10841-016-9929-z. DOI
Paulson D. World Odonata List. University of Puget Sound; Washington, DC, USA: 2018. [(accessed on 10 December 2018)]. Available online: https://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/
Bates D., Maechler M., Bolker B., Walker S., Christensen R.H.B., Singmann H., Dai B., Grothendieck G. Package ‘lme4’. [(accessed on 10 October 2018)]; Available online: https://cran.r-project.org/web/packages/lme4/index.html.
Hothorn T., Bretz F., Westfall P., Heiberger R.M., Schuetzenmeister A., Scheibe S. Multcomp: Simultaneous Inference in General Parametric Models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing; Vienna, Austria: 2015. [(accessed on 10 October 2018)]. Available online: http://www.R-project.org/
Janz N. Evolutionary ecology of oviposition strategies. Evol. Ecol. 2002:349–376. doi: 10.1002/9780470760253. DOI
Harabiš F., Dolný A., Šipoš J. Enigmatic adult overwintering in damselflies: Coexistence as weaker intraguild competitors due to niche separation in time. Popul. Ecol. 2012;54:549–556. doi: 10.1007/s10144-012-0331-8. DOI
Umbanhowar J., Hastings A. The Impact of Resource Limitation and the Phenology of Parasitoid Attack on the Duration of Insect Herbivore Outbreaks. Theor. Popul. Biol. 2002;62:259–269. doi: 10.1006/tpbi.2002.1617. PubMed DOI
Borisov S.N. Adaptations of dragonflies (Odonata) under desert conditions. Entomol. Rev. 2006;86:534–543. doi: 10.1134/S0013873806050058. DOI
Schiel F.J., Buchwald R. Contrasting life-history patterns between vernal pond specialists and hydroperiod generalists in Lestes damselflies (Odonata: Lestidae) Odonatologica. 2015;44:349–374.