• This record comes from PubMed

The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement

. 2019 Jan 17 ; 20 (2) : . [epub] 20190117

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
NV18-05-00379 Ministerstvo Zdravotnictví Ceské Republiky
AOTEU-R-2016-064 AOTRAUMA Switzerland
665860 Horizon 2020 Framework Programme

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.

See more in PubMed

Bohner M., Gbureck U., Barralet J. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials. 2005;26:6423–6429. doi: 10.1016/j.biomaterials.2005.03.049. PubMed DOI

Ginebra M., Canal C., Espanol M., Pastorino D., Montufar E. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012;64:1090–1110. doi: 10.1016/j.addr.2012.01.008. PubMed DOI

O’Hara R., Buchanan F., Dunne N. Injectable calcium phosphate cements for spinal bone repair. Biomater. Bone Regen. 2014:26–61. doi: 10.1533/9780857098104.1.26. DOI

O’Hara R., Orr J., Buchanan F., Wilcox R., Barton D., Dunne N. Development of a bovine collagen–apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012;8:4043–4052. doi: 10.1016/j.actbio.2012.07.003. PubMed DOI

Perez R., Ginebra M. Injectable collagen/α-tricalcium phosphate cement: Collagen–mineral phase interactions and cell response. J. Mater. Sci. Mater. Med. 2013;24:381–393. doi: 10.1007/s10856-012-4799-8. PubMed DOI

Bigi A., Bracci B., Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893–2899. doi: 10.1016/j.biomaterials.2003.09.059. PubMed DOI

An J., Wolke J., Jansen J., Leeuwenburgh S. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J. Mater. Sci. Mater. Med. 2016;27:58. doi: 10.1007/s10856-016-5665-x. PubMed DOI PMC

Song H., Esfakur Rahman A., Lee B. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J. Mater. Sci. Mater. Med. 2009;20:935–941. doi: 10.1007/s10856-008-3642-8. PubMed DOI

Wang X., Ye J., Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J. Biomed. Mater. Res. Part B. 2006;78B:259–264. doi: 10.1002/jbm.b.30481. PubMed DOI

Shahbazi S., Moztarzadeh F., Sadeghi G., Jafari Y. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Mater. Sci. Eng. C. 2016;69:1201–1209. doi: 10.1016/j.msec.2016.08.035. PubMed DOI

Maazouz Y., Montufar E., Malbert J., Espanol M., Ginebra M. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomater. 2017;49:563–574. doi: 10.1016/j.actbio.2016.11.043. PubMed DOI

Huh H., Zhao L., Kim S. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 2015;126:130–140. doi: 10.1016/j.carbpol.2015.03.033. PubMed DOI

Qiao M., Chen D., Ma X., Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 2005;294:103–112. doi: 10.1016/j.ijpharm.2005.01.017. PubMed DOI

Rizzarelli P., Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal. Chim. Acta. 2014;808:18–43. doi: 10.1016/j.aca.2013.11.001. PubMed DOI

Yu L., Chang G., Zhang H., Ding J. Temperature-induced spontaneous sol-gel transitions of poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Part A Polym. Chem. 2007;45:1122–1133. doi: 10.1002/pola.21876. DOI

Michlovská L., Vojtová L., Humpa O., Kučerík J., Žídek J., Jančář J. Hydrolytic stability of end-linked hydrogels from PLGA–PEG–PLGA macromonomers terminated by α,ω-itaconyl groups. RSC Adv. 2016;6:16808–16816. doi: 10.1039/C5RA26222D. DOI

Chamradová I., Vojtová L., Částková K., Diviš P., Peterek M., Jančář J. The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. Colloid Polym. Sci. 2017;295:107–115. doi: 10.1007/s00396-016-3983-7. DOI

Michlovská L., Vojtová L., Mravcová L., Hermanová S., Kučerík J., Jančář J. Functionalization Conditions of PLGA–PEG–PLGA Copolymer with Itaconic Anhydride. Macromol. Symp. 2010;295:119–124. doi: 10.1002/masy.200900071. DOI

Montufar E., Maazouz Y., Ginebra M. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013;9:6188–6198. doi: 10.1016/j.actbio.2012.11.028. PubMed DOI

Durucan C., Brown P. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000;11:365–371. doi: 10.1023/A:1008934024440. PubMed DOI

Wei X., Ugurlu O., Akinc M. Hydrolysis of α-Tricalcium Phosphate in Simulated Body Fluid and Dehydration Behavior during the Drying Process. J. Am. Ceram. Soc. 2007;90:2315–2321. doi: 10.1111/j.1551-2916.2007.01682.x. DOI

Espanol M., Perez R., Montufar E., Marichal C., Sacco A., Ginebra M. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009;5:2752–2762. doi: 10.1016/j.actbio.2009.03.011. PubMed DOI

Carte D., Hayes W. The compressive behavior of bone as a two-phase porous structure. J. Bone Jt. Surg. Ser. A. 1977;59:954–962. doi: 10.2106/00004623-197759070-00021. PubMed DOI

Diez-Escudero A., Espanol M., Beats S., Ginebra M.P. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition. Acta Biomater. 2017;60:81–92. doi: 10.1016/j.actbio.2017.07.033. PubMed DOI

Silver I.A., Murrills R.J., Etherington D.J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 1988;175:266–276. doi: 10.1016/0014-4827(88)90191-7. PubMed DOI

Sariibrahimoglu K., Leeuwenburgh S.C., Wolke J.G., Yubao L., Jansen J.A. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J. Biomed. Mater. Res. Part A. 2012;100:712–719. doi: 10.1002/jbm.a.34009. PubMed DOI

Sadowska J.M., Guillem-Marti J., Montufar E.B., Espanol M., Ginebra M.P. Biomimetic versus Sintered Calcium Phosphates: The in vitro Behavior of Osteoblasts and Mesenchymal Stem Cells. Tissue Eng. Part A. 2017;23:1297–1309. doi: 10.1089/ten.tea.2016.0406. PubMed DOI

Bohner M., Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–1563. doi: 10.1016/j.biomaterials.2004.05.010. PubMed DOI

O’Neill R., McCarthy H., Montufar E., Ginebra M., Wilson D., Lennon A., Dunne N. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater. 2017;50:1–19. doi: 10.1016/j.actbio.2016.11.019. PubMed DOI

Ginebra M., Fernández E., De Maeyer E., Verbeeck R., Boltong M., Ginebra J., Driessens F., Planell J. Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement. J. Dent. Res. 2016;76:905–912. doi: 10.1177/00220345970760041201. PubMed DOI

Liu C., Shao H., Chen F., Zheng H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials. 2006;27:5003–5013. doi: 10.1016/j.biomaterials.2006.05.043. PubMed DOI

Sarda S., Fernández E., Llorens J., Martínez S., Nilsson M., Planell J. Rheological properties of an apatitic bone cement during initial setting. J. Mater. Sci. Mater. Med. 2001;12:905–909. doi: 10.1023/A:1012832325957. PubMed DOI

Driessens F., Planell J., Boltong M., Khairoun I., Ginebra M. Osteotransductive bone cements. Proc. Inst. Mech. Eng. Part H. 2016;212:427–435. doi: 10.1243/0954411981534196. PubMed DOI

Zolnik B.S., Burgess D.J. Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release. 2007;122:338–344. doi: 10.1016/j.jconrel.2007.05.034. PubMed DOI

Yoo J.Y., Kim J.M., Seo K.S., Jeong Y.K., Lee H.B., Khang G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med. Mater. Eng. 2005;15:279–288. PubMed

Smith B.T., Lu A., Watson E., Santoro M., Melchiorri A.J., Grosfeld E.C., van den Beucken J.J.J.P., Jansen J.A., Scott D.W., Fisher J.P., et al. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomater. 2018;78:341–350. doi: 10.1016/j.actbio.2018.07.054. PubMed DOI PMC

Frankenburg E.P., Goldstein S.A., Bauer T.W., Harris S.A., Poser R.D. Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Jt. Surg. Am. 1998;80:1112–1124. doi: 10.2106/00004623-199808000-00004. PubMed DOI

Kovtun A., Goeckelmann M., Niclas A., Montufar E., Ginebra M., Planell J., Santin M., Ignatius A. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomater. 2015;12:242–249. doi: 10.1016/j.actbio.2014.10.034. PubMed DOI PMC

Schumacher M., Uhl F., Detsch R., Deisinger U., Ziegler G. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 2010;21:3039–3048. doi: 10.1007/s10856-010-4153-y. PubMed DOI

ISO13314:2011 . Mechanical Testing of Metals—Ductility Testing–Compression Test for Porous and Cellular Metals. ISO; Geneva, Switzerland: 2011.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...