Molecular Genetics of Renal Cell Tumors: A Practical Diagnostic Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Q39
Charles University Research Fund
FNPl 00669806
Ministry of Health of the Czech republic-Conceptual Development of Research Organization (Faculty Hospital in Plzen
PubMed
31905821
PubMed Central
PMC7017183
DOI
10.3390/cancers12010085
PII: cancers12010085
Knihovny.cz E-zdroje
- Klíčová slova
- kidney, molecular genetic features, practical approach, renal cell carcinoma, review,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Renal epithelial cell tumors are composed of a heterogeneous group of tumors with variable morphologic, immunohistochemical, and molecular features. A "histo-molecular" approach is now an integral part of defining renal tumors, aiming to be clinically and therapeutically pertinent. Most renal epithelial tumors including the new and emerging entities have distinct molecular and genetic features which can be detected using various methods. Most renal epithelial tumors can be diagnosed easily based on pure histologic findings with or without immunohistochemical examination. Furthermore, molecular-genetic testing can be utilized to assist in arriving at an accurate diagnosis. In this review, we presented the most current knowledge concerning molecular-genetic aspects of renal epithelial neoplasms, which potentially can be used in daily diagnostic practice.
Zobrazit více v PubMed
Kovacs G., Akhtar M., Beckwith B.J., Bugert P., Cooper C.S., Delahunt B., Eble J.N., Fleming S., Ljungberg B., Medeiros L.J., et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183:131–133. doi: 10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G. PubMed DOI
Storkel S., Eble J.N., Adlakha K., Amin M., Blute M.L., Bostwick D.G., Darson M., Delahunt B., Iczkowski K. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC) Cancer. 1997;80:987–989. doi: 10.1002/(SICI)1097-0142(19970901)80:5<987::AID-CNCR24>3.0.CO;2-R. PubMed DOI
Eble J.N., Sauter G., Epstein J., Sesterhenn I. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs, WHO Classification of Tumours. 3rd ed. Volume 7 WHO; Geneva, Switzerland: IARC Press; Lyon, Switzerland: 2004.
Delahunt B., Srigley J.R., Montironi R., Egevad L. Advances in renal neoplasia: Recommendations from the 2012 International Society of Urological Pathology Consensus Conference. Urology. 2014;83:969–974. doi: 10.1016/j.urology.2014.02.004. PubMed DOI
Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E. WHO Classification of Tumours of the Urinary System and Male Genital Organs—WHO Classification of Tumours. 4th ed. Volume 8 WHO; Geneva, Switzerland: IARC Press; Lyon, Switzerland: 2016.
Petersson F., Grossmann P., Hora M., Sperga M., Montiel D.P., Martinek P., Gutierrez M.E., Bulimbasic S., Michal M., Branzovsky J., et al. Renal cell carcinoma with areas mimicking renal angiomyoadenomatous tumor/clear cell papillary renal cell carcinoma. Hum. Pathol. 2013;44:1412–1420. doi: 10.1016/j.humpath.2012.11.019. PubMed DOI
Somoracz A., Kuthi L., Micsik T., Jenei A., Hajdu A., Vrabely B., Raso E., Sapi Z., Bajory Z., Kulka J., et al. Renal Cell Carcinoma with Clear Cell Papillary Features: Perspectives of a Differential Diagnosis. Pathol. Oncol. Res. 2019 doi: 10.1007/s12253-019-00757-3. PubMed DOI PMC
Carroll P.R., Murty V.V., Reuter V., Jhanwar S., Fair W.R., Whitmore W.F., Chaganti R.S. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma. Cancer Genet. Cytogenet. 1987;26:253–259. doi: 10.1016/0165-4608(87)90059-8. PubMed DOI
Smits K.M., Schouten L.J., van Dijk B.A., Hulsbergen-van de Kaa C.A., Wouters K.A., Oosterwijk E., van Engeland M., van den Brandt P.A. Genetic and epigenetic alterations in the von hippel-lindau gene: The influence on renal cancer prognosis. Clin. Cancer Res. 2008;14:782–787. doi: 10.1158/1078-0432.CCR-07-1753. PubMed DOI
Banks R.E., Tirukonda P., Taylor C., Hornigold N., Astuti D., Cohen D., Maher E.R., Stanley A.J., Harnden P., Joyce A., et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 2006;66:2000–2011. doi: 10.1158/0008-5472.CAN-05-3074. PubMed DOI
Latif F., Tory K., Gnarra J., Yao M., Duh F.M., Orcutt M.L., Stackhouse T., Kuzmin I., Modi W., Geil L., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260:1317–1320. doi: 10.1126/science.8493574. PubMed DOI
Dalgliesh G.L., Furge K., Greenman C., Chen L., Bignell G., Butler A., Davies H., Edkins S., Hardy C., Latimer C., et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–363. doi: 10.1038/nature08672. PubMed DOI PMC
Guo G., Gui Y., Gao S., Tang A., Hu X., Huang Y., Jia W., Li Z., He M., Sun L., et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 2011;44:17–19. doi: 10.1038/ng.1014. PubMed DOI
Varela I., Tarpey P., Raine K., Huang D., Ong C.K., Stephens P., Davies H., Jones D., Lin M.L., Teague J., et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–542. doi: 10.1038/nature09639. PubMed DOI PMC
Suzigan S., Lopez-Beltran A., Montironi R., Drut R., Romero A., Hayashi T., Gentili A.L., Fonseca P.S., deTorres I., Billis A., et al. Multilocular cystic renal cell carcinoma: A report of 45 cases of a kidney tumor of low malignant potential. Am. J. Clin. Pathol. 2006;125:217–222. doi: 10.1309/AH6FC77PYR2V6YAY. PubMed DOI
Williamson S.R., Halat S., Eble J.N., Grignon D.J., Lopez-Beltran A., Montironi R., Tan P.H., Wang M., Zhang S., Maclennan G.T., et al. Multilocular cystic renal cell carcinoma: Similarities and differences in immunoprofile compared with clear cell renal cell carcinoma. Am. J. Surg. Pathol. 2012;36:1425–1433. doi: 10.1097/PAS.0b013e31825b37f0. PubMed DOI
Halat S., Eble J.N., Grignon D.J., Lopez-Beltran A., Montironi R., Tan P.H., Wang M., Zhang S., MacLennan G.T., Cheng L. Multilocular cystic renal cell carcinoma is a subtype of clear cell renal cell carcinoma. Mod. Pathol. 2010;23:931–936. doi: 10.1038/modpathol.2010.78. PubMed DOI
von Teichman A., Comperat E., Behnke S., Storz M., Moch H., Schraml P. VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma. Mod. Pathol. 2011;24:571–578. doi: 10.1038/modpathol.2010.222. PubMed DOI
Raspollini M.R., Castiglione F., Martignoni G., Cheng L., Montironi R., Lopez-Beltran A. Unlike in clear cell renal cell carcinoma, KRAS is not mutated in multilocular cystic clear cell renal cell neoplasm of low potential. Virchows Arch. 2015;467:687–693. doi: 10.1007/s00428-015-1859-8. PubMed DOI
Raspollini M.R., Castiglione F., Cheng L., Montironi R., Lopez-Beltran A. Synchronous clear cell renal cell carcinoma and multilocular cystic renal cell neoplasia of low malignant potential: A clinico-pathologic and molecular study. Pathol. Res. Pr. 2016;212:471–474. doi: 10.1016/j.prp.2016.01.001. PubMed DOI
Szymanska K., Moore L.E., Rothman N., Chow W.H., Waldman F., Jaeger E., Waterboer T., Foretova L., Navratilova M., Janout V., et al. TP53, EGFR, and KRAS mutations in relation to VHL inactivation and lifestyle risk factors in renal-cell carcinoma from central and eastern Europe. Cancer Lett. 2010;293:92–98. doi: 10.1016/j.canlet.2009.11.024. PubMed DOI
Gattenlohner S., Etschmann B., Riedmiller H., Muller-Hermelink H.K. Lack of KRAS and BRAF mutation in renal cell carcinoma. Eur. Urol. 2009;55:1490–1491. doi: 10.1016/j.eururo.2009.02.024. PubMed DOI
Bayrak O., Sen H., Bulut E., Cengiz B., Karakok M., Erturhan S., Seckiner I. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma. J. Kidney Cancer VHL. 2014;1:40–45. doi: 10.15586/jkcvhl.2014.10. PubMed DOI PMC
Sato Y., Yoshizato T., Shiraishi Y., Maekawa S., Okuno Y., Kamura T., Shimamura T., Sato-Otsubo A., Nagae G., Suzuki H., et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 2013;45:860–867. doi: 10.1038/ng.2699. PubMed DOI
Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49. doi: 10.1038/nature12222. PubMed DOI PMC
Delahunt B., Algaba F., Eble J., Cheville J., Amin M.B., Argani P., Martignoni G., Moch H., Srigley J.R., Tan P.H., et al. Papillary renal cell carcinoma. In: Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E., editors. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. Volume 8. International Agency for Research on Cancer; Lyon, France: 2016. pp. 23–25.
Cancer Genome Atlas Research N., Linehan W.M., Spellman P.T., Ricketts C.J., Creighton C.J., Fei S.S., Davis C., Wheeler D.A., Murray B.A., Schmidt L., et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016;374:135–145. doi: 10.1056/NEJMoa1505917. PubMed DOI PMC
Pitra T., Pivovarcikova K., Alaghehbandan R., Hes O. Chromosomal numerical aberration pattern in papillary renal cell carcinoma: Review article. Ann. Diagn. Pathol. 2019;40:189–199. doi: 10.1016/j.anndiagpath.2017.11.004. PubMed DOI
Zbar B., Tory K., Merino M., Schmidt L., Glenn G., Choyke P., Walther M.M., Lerman M., Linehan W.M. Hereditary papillary renal cell carcinoma. J. Urol. 1994;151:561–566. doi: 10.1016/S0022-5347(17)35015-2. PubMed DOI
Schmidt L., Duh F.M., Chen F., Kishida T., Glenn G., Choyke P., Scherer S.W., Zhuang Z., Lubensky I., Dean M., et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 1997;16:68–73. doi: 10.1038/ng0597-68. PubMed DOI
Dharmawardana P.G., Giubellino A., Bottaro D.P. Hereditary papillary renal carcinoma type I. Curr. Mol. Med. 2004;4:855–868. doi: 10.2174/1566524043359674. PubMed DOI
Lefevre M., Couturier J., Sibony M., Bazille C., Boyer K., Callard P., Vieillefond A., Allory Y. Adult papillary renal tumor with oncocytic cells: Clinicopathologic, immunohistochemical, and cytogenetic features of 10 cases. Am. J. Surg. Pathol. 2005;29:1576–1581. doi: 10.1097/01.pas.0000184821.09871.ec. PubMed DOI
Han G., Yu W., Chu J., Liu Y., Jiang Y., Li Y., Zhang W. Oncocytic papillary renal cell carcinoma: A clinicopathological and genetic analysis and indolent clinical course in 14 cases. Pathol. Res. Pr. 2017;213:1–6. doi: 10.1016/j.prp.2016.04.009. PubMed DOI
Kunju L.P., Wojno K., Wolf J.S., Jr., Cheng L., Shah R.B. Papillary renal cell carcinoma with oncocytic cells and nonoverlapping low grade nuclei: Expanding the morphologic spectrum with emphasis on clinicopathologic, immunohistochemical and molecular features. Hum. Pathol. 2008;39:96–101. doi: 10.1016/j.humpath.2007.05.016. PubMed DOI
Hes O., Brunelli M., Michal M., Cossu Rocca P., Hora M., Chilosi M., Mina M., Boudova L., Menestrina F., Martignoni G. Oncocytic papillary renal cell carcinoma: A clinicopathologic, immunohistochemical, ultrastructural, and interphase cytogenetic study of 12 cases. Ann. Diagn. Pathol. 2006;10:133–139. doi: 10.1016/j.anndiagpath.2005.12.002. PubMed DOI
Srigley J.R., Delahunt B., Eble J.N., Egevad L., Epstein J.I., Grignon D., Hes O., Moch H., Montironi R., Tickoo S.K., et al. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am. J. Surg. Pathol. 2013;37:1469–1489. doi: 10.1097/PAS.0b013e318299f2d1. PubMed DOI
Michalova K., Steiner P., Alaghehbandan R., Trpkov K., Martinek P., Grossmann P., Montiel D.P., Sperga M., Straka L., Prochazkova K., et al. Papillary renal cell carcinoma with cytologic and molecular genetic features overlapping with renal oncocytoma: Analysis of 10 cases. Ann. Diagn. Pathol. 2018;35:1–6. doi: 10.1016/j.anndiagpath.2018.01.010. PubMed DOI
Saleeb R.M., Brimo F., Farag M., Rompre-Brodeur A., Rotondo F., Beharry V., Wala S., Plant P., Downes M.R., Pace K., et al. Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis. Am. J. Surg. Pathol. 2017;41:1618–1629. doi: 10.1097/PAS.0000000000000962. PubMed DOI
Al-Obaidy K.I., Eble J.N., Cheng L., Williamson S.R., Sakr W.A., Gupta N., Idrees M.T., Grignon D.J. Papillary Renal Neoplasm with Reverse Polarity: A Morphologic, Immunohistochemical, and Molecular Study. Am. J. Surg. Pathol. 2019;43:1099–1111. doi: 10.1097/PAS.0000000000001288. PubMed DOI
Al-Obaidy K.I., Eble J.N., Nassiri M., Cheng L., Eldomery M.K., Williamson S.R., Sakr W.A., Gupta N., Hassan O., Idrees M.T., et al. Recurrent KRAS mutations in papillary renal neoplasm with reverse polarity. Mod. Pathol. 2019 doi: 10.1038/s41379-019-0362-1. PubMed DOI
Marsaud A., Dadone B., Ambrosetti D., Baudoin C., Chamorey E., Rouleau E., Lefol C., Roussel J.F., Fabas T., Cristofari G., et al. Dismantling papillary renal cell carcinoma classification: The heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes Cancer. 2015;54:369–382. doi: 10.1002/gcc.22248. PubMed DOI
Pivovarcikova K., Peckova K., Martinek P., Montiel D.P., Kalusova K., Pitra T., Hora M., Skenderi F., Ulamec M., Daum O., et al. “Mucin”-secreting papillary renal cell carcinoma: Clinicopathological, immunohistochemical, and molecular genetic analysis of seven cases. Virchows Arch. 2016;469:71–80. doi: 10.1007/s00428-016-1936-7. PubMed DOI
Peckova K., Martinek P., Pivovarcikova K., Vanecek T., Alaghehbandan R., Prochazkova K., Montiel D.P., Hora M., Skenderi F., Ulamec M., et al. Cystic and necrotic papillary renal cell carcinoma: Prognosis, morphology, immunohistochemical, and molecular-genetic profile of 10 cases. Ann. Diagn Pathol. 2017;26:23–30. doi: 10.1016/j.anndiagpath.2016.10.007. PubMed DOI
Ulamec M., Skenderi F., Trpkov K., Kruslin B., Vranic S., Bulimbasic S., Trivunic S., Montiel D.P., Peckova K., Pivovarcikova K., et al. Solid papillary renal cell carcinoma: Clinicopathologic, morphologic, and immunohistochemical analysis of 10 cases and review of the literature. Ann. Diagn. Pathol. 2016;23:51–57. doi: 10.1016/j.anndiagpath.2016.04.008. PubMed DOI
Hes O., Condom Mundo E., Peckova K., Lopez J.I., Martinek P., Vanecek T., Falconieri G., Agaimy A., Davidson W., Petersson F., et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma? Am. J. Surg. Pathol. 2016;40:664–675. doi: 10.1097/PAS.0000000000000639. PubMed DOI
Trpkov K., Athanazio D., Magi-Galluzzi C., Yilmaz H., Clouston D., Agaimy A., Williamson S.R., Brimo F., Lopez J.I., Ulamec M., et al. Biphasic papillary renal cell carcinoma is a rare morphological variant with frequent multifocality: A study of 28 cases. Histopathology. 2018;72:777–785. doi: 10.1111/his.13432. PubMed DOI
Skenderi F., Ulamec M., Vanecek T., Martinek P., Alaghehbandan R., Foix M.P., Babankova I., Montiel D.P., Alvarado-Cabrero I., Svajdler M., et al. Warthin-like papillary renal cell carcinoma: Clinicopathologic, morphologic, immunohistochemical and molecular genetic analysis of 11 cases. Ann. Diagn. Pathol. 2017;27:48–56. doi: 10.1016/j.anndiagpath.2017.01.005. PubMed DOI
Hes O., Vanecek T., Perez-Montiel D.M., Alvarado Cabrero I., Hora M., Suster S., Lamovec J., Curik R., Mandys V., Michal M. Chromophobe renal cell carcinoma with microcystic and adenomatous arrangement and pigmentation--a diagnostic pitfall. Morphological, immunohistochemical, ultrastructural and molecular genetic report of 20 cases. Virchows Arch. 2005;446:383–393. doi: 10.1007/s00428-004-1187-x. PubMed DOI
Michal M., Hes O., Svec A., Ludvikova M. Pigmented microcystic chromophobe cell carcinoma: A unique variant of renal cell carcinoma. Ann. Diagn. Pathol. 1998;2:149–153. doi: 10.1016/S1092-9134(98)80001-4. PubMed DOI
Dundr P., Pesl M., Povysil C., Tvrdik D., Pavlik I., Soukup V., Dvoracek J. Pigmented microcystic chromophobe renal cell carcinoma. Pathol. Res. Pr. 2007;203:593–597. doi: 10.1016/j.prp.2007.05.005. PubMed DOI
Foix M.P., Dunatov A., Martinek P., Mundo E.C., Suster S., Sperga M., Lopez J.I., Ulamec M., Bulimbasic S., Montiel D.P., et al. Morphological, immunohistochemical, and chromosomal analysis of multicystic chromophobe renal cell carcinoma, an architecturally unusual challenging variant. Virchows Arch. 2016;469:669–678. doi: 10.1007/s00428-016-2022-x. PubMed DOI
Peckova K., Martinek P., Ohe C., Kuroda N., Bulimbasic S., Condom Mundo E., Perez Montiel D., Lopez J.I., Daum O., Rotterova P., et al. Chromophobe renal cell carcinoma with neuroendocrine and neuroendocrine-like features. Morphologic, immunohistochemical, ultrastructural, and array comparative genomic hybridization analysis of 18 cases and review of the literature. Ann. Diagn. Pathol. 2015;19:261–268. doi: 10.1016/j.anndiagpath.2015.05.001. PubMed DOI
Parada D.D., Pena K.B. Chromophobe renal cell carcinoma with neuroendocrine differentiation. APMIS. 2008;116:859–865. doi: 10.1111/j.1600-0463.2008.01004.x. PubMed DOI
Kuroda N., Tamura M., Hes O., Michal M., Gatalica Z. Chromophobe renal cell carcinoma with neuroendocrine differentiation and sarcomatoid change. Pathol. Int. 2011;61:552–554. doi: 10.1111/j.1440-1827.2011.02689.x. PubMed DOI
Mokhtar G.A., Al-Zahrani R. Chromophobe renal cell carcinoma of the kidney with neuroendocrine differentiation: A case report with review of literature. Urol. Ann. 2015;7:383–386. doi: 10.4103/0974-7796.158506. PubMed DOI PMC
Ohe C., Kuroda N., Matsuura K., Kai T., Moriyama M., Sugiguchi S., Terahata S., Hosaka N., Hes O., Michal M., et al. Chromophobe renal cell carcinoma with neuroendocrine differentiation/morphology: A clinicopathological and genetic study of three cases. Hum. Pathol. Case Rep. 2014;1:31–39. doi: 10.1016/j.ehpc.2014.08.003. DOI
Kuroda N., Tanaka A., Yamaguchi T., Kasahara K., Naruse K., Yamada Y., Hatanaka K., Shinohara N., Nagashima Y., Mikami S., et al. Chromophobe renal cell carcinoma, oncocytic variant: A proposal of a new variant giving a critical diagnostic pitfall in diagnosing renal oncocytic tumors. Med. Mol. Morphol. 2013;46:49–55. doi: 10.1007/s00795-012-0007-7. PubMed DOI
Speicher M.R., Schoell B., du Manoir S., Schrock E., Ried T., Cremer T., Storkel S., Kovacs A., Kovacs G. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am. J. Pathol. 1994;145:356–364. PubMed PMC
Paner G., Amin M.B., Moch H., Störkel S. Chromophobe renal cell carcinoma. In: Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E., editors. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. Volume 8. International Agency for Research on Cancer; Lyon, France: 2016. pp. 27–28.
Davis C.F., Ricketts C.J., Wang M., Yang L., Cherniack A.D., Shen H., Buhay C., Kang H., Kim S.C., Fahey C.C., et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26:319–330. doi: 10.1016/j.ccr.2014.07.014. PubMed DOI PMC
Vieira J., Henrique R., Ribeiro F.R., Barros-Silva J.D., Peixoto A., Santos C., Pinheiro M., Costa V.L., Soares M.J., Oliveira J., et al. Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Genes Chromosomes Cancer. 2010;49:935–947. doi: 10.1002/gcc.20805. PubMed DOI
Sperga M., Martinek P., Vanecek T., Grossmann P., Bauleth K., Perez-Montiel D., Alvarado-Cabrero I., Nevidovska K., Lietuvietis V., Hora M., et al. Chromophobe renal cell carcinoma--chromosomal aberration variability and its relation to Paner grading system: An array CGH and FISH analysis of 37 cases. Virchows Arch. 2013;463:563–573. doi: 10.1007/s00428-013-1457-6. PubMed DOI
Tan M.H., Wong C.F., Tan H.L., Yang X.J., Ditlev J., Matsuda D., Khoo S.K., Sugimura J., Fujioka T., Furge K.A., et al. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer. 2010;10:196. doi: 10.1186/1471-2407-10-196. PubMed DOI PMC
Crotty T.B., Lawrence K.M., Moertel C.A., Bartelt D.H., Jr., Batts K.P., Dewald G.W., Farrow G.M., Jenkins R.B. Cytogenetic analysis of six renal oncocytomas and a chromophobe cell renal carcinoma. Evidence that -Y, -1 may be a characteristic anomaly in renal oncocytomas. Cancer Genet Cytogenet. 1992;61:61–66. doi: 10.1016/0165-4608(92)90372-F. PubMed DOI
Fuzesi L., Gunawan B., Braun S., Boeckmann W. Renal oncocytoma with a translocation t(9;11)(p23;q13) J. Urol. 1994;152:471–472. doi: 10.1016/S0022-5347(17)32766-0. PubMed DOI
Paner G.P., Lindgren V., Jacobson K., Harrison K., Cao Y., Campbell S.C., Flanigan R.C., Picken M.M. High incidence of chromosome 1 abnormalities in a series of 27 renal oncocytomas: Cytogenetic and fluorescence in situ hybridization studies. Arch. Pathol. Lab. Med. 2007;131:81–85. doi: 10.1043/1543-2165(2007)131[81:HIOCAI]2.0.CO;2. PubMed DOI
Lindgren V., Paner G.P., Omeroglu A., Campbell S.C., Waters W.B., Flanigan R.C., Picken M.M. Cytogenetic analysis of a series of 13 renal oncocytomas. J. Urol. 2004;171:602–604. doi: 10.1097/01.ju.0000109172.07081.16. PubMed DOI
Picken M.M., Chyna B., Flanigan R.C., Lee J.M. Analysis of chromosome 1p abnormalities in renal oncocytomas by loss of heterozygosity studies: Correlation with conventional cytogenetics and fluorescence in situ hybridization. Am. J. Clin. Pathol. 2008;129:377–382. doi: 10.1309/KC2465ANDWVAXYDM. PubMed DOI
Anderson C.B., Lipsky M., Nandula S.V., Freeman C.E., Matthews T., Walsh C.E., Li G., Szabolcs M., Mansukhani M.M., McKiernan J.M., et al. Cytogenetic analysis of 130 renal oncocytomas identify three distinct and mutually exclusive diagnostic classes of chromosome aberrations. Genes Chromosomes Cancer. 2019 doi: 10.1002/gcc.22766. PubMed DOI
Joshi S., Tolkunov D., Aviv H., Hakimi A.A., Yao M., Hsieh J.J., Ganesan S., Chan C.S., White E. The Genomic Landscape of Renal Oncocytoma Identifies a Metabolic Barrier to Tumorigenesis. Cell Rep. 2015;13:1895–1908. doi: 10.1016/j.celrep.2015.10.059. PubMed DOI PMC
Sukov W.R., Ketterling R.P., Lager D.J., Carlson A.W., Sinnwell J.P., Chow G.K., Jenkins R.B., Cheville J.C. CCND1 rearrangements and cyclin D1 overexpression in renal oncocytomas: Frequency, clinicopathologic features, and utility in differentiation from chromophobe renal cell carcinoma. Hum. Pathol. 2009;40:1296–1303. doi: 10.1016/j.humpath.2009.01.016. PubMed DOI
Williamson S.R., Eble J.N., Cheng L., Grignon D.J. Clear cell papillary renal cell carcinoma: Differential diagnosis and extended immunohistochemical profile. Mod. Pathol. 2013;26:697–708. doi: 10.1038/modpathol.2012.204. PubMed DOI
Mantilla J.G., Antic T., Tretiakova M.S. GATA-3 Is a Specific Marker for Clear Cell Papillary Renal Cell Carcinoma. Mod. Pathol. 2017;30:241A. PubMed
Martignoni G., Brunelli M., Segala D., Munari E., Gobbo S., Cima L., Borze I., Wirtanen T., Sarhadi V.K., Atanesyan L., et al. Validation of 34betaE12 immunoexpression in clear cell papillary renal cell carcinoma as a sensitive biomarker. Pathology. 2017;49:10–18. doi: 10.1016/j.pathol.2016.05.014. PubMed DOI
Hes O., Comperat E.M., Rioux-Leclercq N. Clear cell papillary renal cell carcinoma, renal angiomyoadenomatous tumor, and renal cell carcinoma with leiomyomatous stroma relationship of 3 types of renal tumors: A review. Ann. Diagn. Pathol. 2016;21:59–64. doi: 10.1016/j.anndiagpath.2015.11.003. PubMed DOI
Gandhi J.S., Malik F., Amin M.B., Argani P., Bahrami A. MiT family translocation renal cell carcinomas: A 15th anniversary update. Histol. Histopathol. 2019:18159. doi: 10.14670/HH-18-159. PubMed DOI
Argani P., Antonescu C.R., Illei P.B., Lui M.Y., Timmons C.F., Newbury R., Reuter V.E., Garvin A.J., Perez-Atayde A.R., Fletcher J.A., et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: A distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am. J. Pathol. 2001;159:179–192. doi: 10.1016/S0002-9440(10)61684-7. PubMed DOI PMC
Argani P., Lui M.Y., Couturier J., Bouvier R., Fournet J.C., Ladanyi M. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23) Oncogene. 2003;22:5374–5378. doi: 10.1038/sj.onc.1206686. PubMed DOI
Argani P., Ladanyi M. Renal carcinomas associated with Xp11.2 translocations / TFE3 gene fusions. In: Eble J.N., Sauter G., Epstein J.I., Sesterhenn I.A., editors. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. 1st ed. IARC Press; Lyon, France: 2004. pp. 37–38.
Argani P., Olgac S., Tickoo S.K., Goldfischer M., Moch H., Chan D.Y., Eble J.N., Bonsib S.M., Jimeno M., Lloreta J., et al. Xp11 translocation renal cell carcinoma in adults: Expanded clinical, pathologic, and genetic spectrum. Am. J. Surg. Pathol. 2007;31:1149–1160. doi: 10.1097/PAS.0b013e318031ffff. PubMed DOI
Argani P., Hicks J., De Marzo A.M., Albadine R., Illei P.B., Ladanyi M., Reuter V.E., Netto G.J. Xp11 translocation renal cell carcinoma (RCC): Extended immunohistochemical profile emphasizing novel RCC markers. Am. J. Surg. Pathol. 2010;34:1295–1303. doi: 10.1097/PAS.0b013e3181e8ce5b. PubMed DOI PMC
Ellis C.L., Eble J.N., Subhawong A.P., Martignoni G., Zhong M., Ladanyi M., Epstein J.I., Netto G.J., Argani P. Clinical heterogeneity of Xp11 translocation renal cell carcinoma: Impact of fusion subtype, age, and stage. Mod. Pathol. 2014;27:875–886. doi: 10.1038/modpathol.2013.208. PubMed DOI
Argani P. MiT family translocation renal cell carcinoma. Semin. Diagn. Pathol. 2015;32:103–113. doi: 10.1053/j.semdp.2015.02.003. PubMed DOI
Argani P., Zhong M., Reuter V.E., Fallon J.T., Epstein J.I., Netto G.J., Antonescu C.R. TFE3-Fusion Variant Analysis Defines Specific Clinicopathologic Associations Among Xp11 Translocation Cancers. Am. J. Surg. Pathol. 2016;40:723–737. doi: 10.1097/PAS.0000000000000631. PubMed DOI PMC
Hayes M., Peckova K., Martinek P., Hora M., Kalusova K., Straka L., Daum O., Kokoskova B., Rotterova P., Pivovarcikova K., et al. Molecular-genetic analysis is essential for accurate classification of renal carcinoma resembling Xp11.2 translocation carcinoma. Virchows Arch. 2015;466:313–322. doi: 10.1007/s00428-014-1702-7. PubMed DOI
Kato I., Furuya M., Baba M., Kameda Y., Yasuda M., Nishimoto K., Oyama M., Yamasaki T., Ogawa O., Niino H., et al. RBM10-TFE3 renal cell carcinoma characterised by paracentric inversion with consistent closely split signals in break-apart fluorescence in-situ hybridisation: Study of 10 cases and a literature review. Histopathology. 2019;75:254–265. doi: 10.1111/his.13866. PubMed DOI
Malouf G.G., Su X., Yao H., Gao J., Xiong L., He Q., Comperat E., Couturier J., Molinie V., Escudier B., et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin. Cancer Res. 2014;20:4129–4140. doi: 10.1158/1078-0432.CCR-13-3036. PubMed DOI PMC
Thway K., du Parcq J., Larkin J.M., Fisher C., Livni N. Metastatic renal mucinous tubular and spindle cell carcinoma. Atypical behavior of a rare, morphologically bland tumor. Ann. Diagn. Pathol. 2012;16:407–410. doi: 10.1016/j.anndiagpath.2011.04.001. PubMed DOI
Dhillon J., Amin M.B., Selbs E., Turi G.K., Paner G.P., Reuter V.E. Mucinous tubular and spindle cell carcinoma of the kidney with sarcomatoid change. Am. J. Surg. Pathol. 2009;33:44–49. doi: 10.1097/PAS.0b013e3181829ed5. PubMed DOI
Bulimbasic S., Ljubanovic D., Sima R., Michal M., Hes O., Kuroda N., Persec Z. Aggressive high-grade mucinous tubular and spindle cell carcinoma. Hum. Pathol. 2009;40:906–907. doi: 10.1016/j.humpath.2009.03.004. PubMed DOI
Paner G.P., Srigley J.R., Radhakrishnan A., Cohen C., Skinnider B.F., Tickoo S.K., Young A.N., Amin M.B. Immunohistochemical analysis of mucinous tubular and spindle cell carcinoma and papillary renal cell carcinoma of the kidney: Significant immunophenotypic overlap warrants diagnostic caution. Am J Surg. Pathol. 2006;30:13–19. doi: 10.1097/01.pas.0000180443.94645.50. PubMed DOI
Ren Q., Wang L., Al-Ahmadie H.A., Fine S.W., Gopalan A., Sirintrapun S.J., Tickoo S.K., Reuter V.E., Chen Y.B. Distinct Genomic Copy Number Alterations Distinguish Mucinous Tubular and Spindle Cell Carcinoma of the Kidney From Papillary Renal Cell Carcinoma With Overlapping Histologic Features. Am. J. Surg. Pathol. 2018;42:767–777. doi: 10.1097/PAS.0000000000001038. PubMed DOI PMC
Peckova K., Martinek P., Sperga M., Montiel D.P., Daum O., Rotterova P., Kalusova K., Hora M., Pivovarcikova K., Rychly B., et al. Mucinous spindle and tubular renal cell carcinoma: Analysis of chromosomal aberration pattern of low-grade, high-grade, and overlapping morphologic variant with papillary renal cell carcinoma. Ann. Diagn. Pathol. 2015;19:226–231. doi: 10.1016/j.anndiagpath.2015.04.004. PubMed DOI
Sadimin E.T., Chen Y.B., Wang L., Argani P., Epstein J.I. Chromosomal abnormalities of high-grade mucinous tubular and spindle cell carcinoma of the kidney. Histopathology. 2017;71:719–724. doi: 10.1111/his.13298. PubMed DOI
Cossu-Rocca P., Eble J.N., Delahunt B., Zhang S., Martignoni G., Brunelli M., Cheng L. Renal mucinous tubular and spindle carcinoma lacks the gains of chromosomes 7 and 17 and losses of chromosome Y that are prevalent in papillary renal cell carcinoma. Mod. Pathol. 2006;19:488–493. doi: 10.1038/modpathol.3800565. PubMed DOI
Zhou M., Yang X.J., Lopez J.I., Shah R.B., Hes O., Shen S.S., Li R., Yang Y., Lin F., Elson P., et al. Renal tubulocystic carcinoma is closely related to papillary renal cell carcinoma: Implications for pathologic classification. Am. J. Surg. Pathol. 2009;33:1840–1849. doi: 10.1097/PAS.0b013e3181be22d1. PubMed DOI
Tran T., Jones C.L., Williamson S.R., Eble J.N., Grignon D.J., Zhang S., Wang M., Baldridge L.A., Wang L., Montironi R., et al. Tubulocystic renal cell carcinoma is an entity that is immunohistochemically and genetically distinct from papillary renal cell carcinoma. Histopathology. 2016;68:850–857. doi: 10.1111/his.12840. PubMed DOI
Yang X.J., Zhou M., Hes O., Shen S., Li R., Lopez J., Shah R.B., Yang Y., Chuang S.T., Lin F., et al. Tubulocystic carcinoma of the kidney: Clinicopathologic and molecular characterization. Am. J. Surg. Pathol. 2008;32:177–187. doi: 10.1097/PAS.0b013e318150df1d. PubMed DOI
Sarungbam J., Mehra R., Tomlins S.A., Smith S.C., Jayakumaran G., Al-Ahmadie H., Gopalan A., Sirintrapun S.J., Fine S.W., Zhang Y., et al. Tubulocystic renal cell carcinoma: A distinct clinicopathologic entity with a characteristic genomic profile. Mod. Pathol. 2019;32:701–709. doi: 10.1038/s41379-018-0185-5. PubMed DOI PMC
Al-Hussain T.O., Cheng L., Zhang S., Epstein J.I. Tubulocystic carcinoma of the kidney with poorly differentiated foci: A series of 3 cases with fluorescence in situ hybridization analysis. Hum. Pathol. 2013;44:1406–1411. doi: 10.1016/j.humpath.2012.11.015. PubMed DOI
Smith S.C., Trpkov K., Chen Y.B., Mehra R., Sirohi D., Ohe C., Cani A.K., Hovelson D.H., Omata K., McHugh J.B., et al. Tubulocystic Carcinoma of the Kidney With Poorly Differentiated Foci: A Frequent Morphologic Pattern of Fumarate Hydratase-deficient Renal Cell Carcinoma. Am. J. Surg. Pathol. 2016;40:1457–1472. doi: 10.1097/PAS.0000000000000719. PubMed DOI PMC
Kuroda N., Ohe C., Mikami S., Hes O., Michal M., Brunelli M., Martignoni G., Sato Y., Yoshino T., Kakehi Y., et al. Review of acquired cystic disease-associated renal cell carcinoma with focus on pathobiological aspects. Histol. Histopathol. 2011;26:1215–1218. doi: 10.14670/HH-26.1215. PubMed DOI
Kuroda N., Shiotsu T., Hes O., Michal M., Shuin T., Lee G.H. Acquired cystic disease-associated renal cell carcinoma with gain of chromosomes 3, 7, and 16, gain of chromosome X, and loss of chromosome Y. Med. Mol. Morphol. 2010;43:231–234. doi: 10.1007/s00795-009-0465-8. PubMed DOI
Kuroda N., Tamura M., Hamaguchi N., Mikami S., Pan C.C., Brunelli M., Martignoni G., Hes O., Michal M., Lee G.H. Acquired cystic disease-associated renal cell carcinoma with sarcomatoid change and rhabdoid features. Ann. Diagn. Pathol. 2011;15:462–466. doi: 10.1016/j.anndiagpath.2010.07.008. PubMed DOI
Kuroda N., Yamashita M., Kakehi Y., Hes O., Michal M., Lee G.H. Acquired cystic disease-associated renal cell carcinoma: An immunohistochemical and fluorescence in situ hybridization study. Med. Mol. Morphol. 2011;44:228–232. doi: 10.1007/s00795-010-0496-1. PubMed DOI
Cossu-Rocca P., Eble J.N., Zhang S., Martignoni G., Brunelli M., Cheng L. Acquired cystic disease-associated renal tumors: An immunohistochemical and fluorescence in situ hybridization study. Mod. Pathol. 2006;19:780–787. doi: 10.1038/modpathol.3800604. PubMed DOI
Kuntz E., Yusenko M.V., Nagy A., Kovacs G. Oligoarray comparative genomic hybridization of renal cell tumors that developed in patients with acquired cystic renal disease. Hum. Pathol. 2010;41:1345–1349. doi: 10.1016/j.humpath.2009.09.022. PubMed DOI
Ohe C., Smith S.C., Sirohi D., Divatia M., de Peralta-Venturina M., Paner G.P., Agaimy A., Amin M.B., Argani P., Chen Y.B., et al. Reappraisal of Morphologic Differences Between Renal Medullary Carcinoma, Collecting Duct Carcinoma, and Fumarate Hydratase-deficient Renal Cell Carcinoma. Am. J. Surg. Pathol. 2018;42:279–292. doi: 10.1097/PAS.0000000000001000. PubMed DOI PMC
Jia L., Carlo M.I., Khan H., Nanjangud G.J., Rana S., Cimera R., Zhang Y., Hakimi A.A., Verma A.K., Al-Ahmadie H.A., et al. Distinctive mechanisms underlie the loss of SMARCB1 protein expression in renal medullary carcinoma: Morphologic and molecular analysis of 20 cases. Mod. Pathol. 2019;32:1329–1343. doi: 10.1038/s41379-019-0273-1. PubMed DOI PMC
Calderaro J., Masliah-Planchon J., Richer W., Maillot L., Maille P., Mansuy L., Bastien C., de la Taille A., Boussion H., Charpy C., et al. Balanced Translocations Disrupting SMARCB1 Are Hallmark Recurrent Genetic Alterations in Renal Medullary Carcinomas. Eur. Urol. 2016;69:1055–1061. doi: 10.1016/j.eururo.2015.09.027. PubMed DOI
Carlo M.I., Chaim J., Patil S., Kemel Y., Schram A.M., Woo K., Coskey D., Nanjangud G.J., Voss M.H., Feldman D.R., et al. Genomic Characterization of Renal Medullary Carcinoma and Treatment Outcomes. Clin. Genitourin. Cancer. 2017;15:e987–e994. doi: 10.1016/j.clgc.2017.04.012. PubMed DOI PMC
Calderaro J., Moroch J., Pierron G., Pedeutour F., Grison C., Maille P., Soyeux P., de la Taille A., Couturier J., Vieillefond A., et al. SMARCB1/INI1 inactivation in renal medullary carcinoma. Histopathology. 2012;61:428–435. doi: 10.1111/j.1365-2559.2012.04228.x. PubMed DOI
Liu Q., Galli S., Srinivasan R., Linehan W.M., Tsokos M., Merino M.J. Renal medullary carcinoma: Molecular, immunohistochemistry, and morphologic correlation. Am. J. Surg. Pathol. 2013;37:368–374. doi: 10.1097/PAS.0b013e3182770406. PubMed DOI PMC
Cheng J.X., Tretiakova M., Gong C., Mandal S., Krausz T., Taxy J.B. Renal medullary carcinoma: Rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod. Pathol. 2008;21:647–652. doi: 10.1038/modpathol.2008.44. PubMed DOI
Rao P., Tannir N.M., Tamboli P. Expression of OCT3/4 in renal medullary carcinoma represents a potential diagnostic pitfall. Am. J. Surg. Pathol. 2012;36:583–588. doi: 10.1097/PAS.0b013e3182417d78. PubMed DOI
Sirohi D., Smith S.C., Ohe C., Colombo P., Divatia M., Dragoescu E., Rao P., Hirsch M.S., Chen Y.B., Mehra R., et al. Renal cell carcinoma, unclassified with medullary phenotype: Poorly differentiated adenocarcinomas overlapping with renal medullary carcinoma. Hum. Pathol. 2017;67:134–145. doi: 10.1016/j.humpath.2017.07.006. PubMed DOI
Amin M.B., Smith S.C., Agaimy A., Argani P., Comperat E.M., Delahunt B., Epstein J.I., Eble J.N., Grignon D.J., Hartmann A., et al. Collecting duct carcinoma versus renal medullary carcinoma: An appeal for nosologic and biological clarity. Am. J. Surg. Pathol. 2014;38:871–874. doi: 10.1097/PAS.0000000000000222. PubMed DOI
Gill A.J. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology. 2012;44:285–292. doi: 10.1097/PAT.0b013e3283539932. PubMed DOI
Gill A.J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72:106–116. doi: 10.1111/his.13277. PubMed DOI
Gill A.J., Benn D.E., Chou A., Clarkson A., Muljono A., Meyer-Rochow G.Y., Richardson A.L., Sidhu S.B., Robinson B.G., Clifton-Bligh R.J. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum. Pathol. 2010;41:805–814. doi: 10.1016/j.humpath.2009.12.005. PubMed DOI
van Nederveen F.H., Gaal J., Favier J., Korpershoek E., Oldenburg R.A., de Bruyn E.M., Sleddens H.F., Derkx P., Riviere J., Dannenberg H., et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: A retrospective and prospective analysis. Lancet Oncol. 2009;10:764–771. doi: 10.1016/S1470-2045(09)70164-0. PubMed DOI PMC
Merino M.J., Linehan W.M. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated renal cell carcinoma. In: Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E., editors. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. Volume 8. International Agency for Research on Cancer; Lyon, France: 2016. pp. 25–26.
Trpkov K., Hes O., Agaimy A., Bonert M., Martinek P., Magi-Galluzzi C., Kristiansen G., Luders C., Nesi G., Comperat E., et al. Fumarate Hydratase-deficient Renal Cell Carcinoma Is Strongly Correlated With Fumarate Hydratase Mutation and Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome. Am. J. Surg. Pathol. 2016;40:865–875. doi: 10.1097/PAS.0000000000000617. PubMed DOI
Pivovarcikova K., Martinek P., Grossmann P., Trpkov K., Alaghehbandan R., Magi-Galluzzi C., Pane Foix M., Condom Mundo E., Berney D., Gill A., et al. Fumarate hydratase deficient renal cell carcinoma: Chromosomal numerical aberration analysis of 12 cases. Ann. Diagn. Pathol. 2019;39:63–68. doi: 10.1016/j.anndiagpath.2019.02.008. PubMed DOI
Lau H.D., Chan E., Fan A.C., Kunder C.A., Williamson S.R., Zhou M., Idrees M.T., Maclean F.M., Gill A.J., Kao C.S. A Clinicopathologic and Molecular Analysis of Fumarate Hydratase-Deficient Renal Cell Carcinoma in 32 Patients. Am. J. Surg. Pathol. 2019 doi: 10.1097/PAS.0000000000001372. PubMed DOI
Shyu I., Mirsadraei L., Wang X., Robila V., Mehra R., McHugh J.B., Chen Y.B., Udager A.M., Gill A.J., Cheng L., et al. Clues to recognition of fumarate hydratase-deficient renal cell carcinoma: Findings from cytologic and limited biopsy samples. Cancer Cytopathol. 2018 doi: 10.1002/cncy.22071. PubMed DOI PMC
Chen Y.B., Brannon A.R., Toubaji A., Dudas M.E., Won H.H., Al-Ahmadie H.A., Fine S.W., Gopalan A., Frizzell N., Voss M.H., et al. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: Recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am. J. Surg. Pathol. 2014;38:627–637. doi: 10.1097/PAS.0000000000000163. PubMed DOI PMC
Muller M., Guillaud-Bataille M., Salleron J., Genestie C., Deveaux S., Slama A., de Paillerets B.B., Richard S., Benusiglio P.R., Ferlicot S. Pattern multiplicity and fumarate hydratase (FH)/S-(2-succino)-cysteine (2SC) staining but not eosinophilic nucleoli with perinucleolar halos differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas from kidney tumors without FH gene alteration. Mod. Pathol. 2018;31:974–983. doi: 10.1038/s41379-018-0017-7. PubMed DOI
Harrison W.J., Andrici J., Maclean F., Madadi-Ghahan R., Farzin M., Sioson L., Toon C.W., Clarkson A., Watson N., Pickett J., et al. Fumarate Hydratase-deficient Uterine Leiomyomas Occur in Both the Syndromic and Sporadic Settings. Am. J. Surg. Pathol. 2016;40:599–607. doi: 10.1097/PAS.0000000000000573. PubMed DOI PMC
Guo J., Tretiakova M.S., Troxell M.L., Osunkoya A.O., Fadare O., Sangoi A.R., Shen S.S., Lopez-Beltran A., Mehra R., Heider A., et al. Tuberous sclerosis-associated renal cell carcinoma: A clinicopathologic study of 57 separate carcinomas in 18 patients. Am. J. Surg. Pathol. 2014;38:1457–1467. doi: 10.1097/PAS.0000000000000248. PubMed DOI
Yang P., Cornejo K.M., Sadow P.M., Cheng L., Wang M., Xiao Y., Jiang Z., Oliva E., Jozwiak S., Nussbaum R.L., et al. Renal cell carcinoma in tuberous sclerosis complex. Am. J. Surg. Pathol. 2014;38:895–909. doi: 10.1097/PAS.0000000000000237. PubMed DOI PMC
Trpkov K., Hes O., Bonert M., Lopez J.I., Bonsib S.M., Nesi G., Comperat E., Sibony M., Berney D.M., Martinek P., et al. Eosinophilic, Solid, and Cystic Renal Cell Carcinoma: Clinicopathologic Study of 16 Unique, Sporadic Neoplasms Occurring in Women. Am. J. Surg. Pathol. 2016;40:60–71. doi: 10.1097/PAS.0000000000000508. PubMed DOI
Mehra R., Vats P., Cao X., Su F., Lee N.D., Lonigro R., Premkumar K., Trpkov K., McKenney J.K., Dhanasekaran S.M., et al. Somatic Bi-allelic Loss of TSC Genes in Eosinophilic Solid and Cystic Renal Cell Carcinoma. Eur. Urol. 2018;74:483–486. doi: 10.1016/j.eururo.2018.06.007. PubMed DOI PMC
Palsgrove D.N., Li Y., Pratilas C.A., Lin M.T., Pallavajjalla A., Gocke C., De Marzo A.M., Matoso A., Netto G.J., Epstein J.I., et al. Eosinophilic Solid and Cystic (ESC) Renal Cell Carcinomas Harbor TSC Mutations: Molecular Analysis Supports an Expanding Clinicopathologic Spectrum. Am. J. Surg. Pathol. 2018;42:1166–1181. doi: 10.1097/PAS.0000000000001111. PubMed DOI PMC
Parilla M., Kadri S., Patil S.A., Ritterhouse L., Segal J., Henriksen K.J., Antic T. Are Sporadic Eosinophilic Solid and Cystic Renal Cell Carcinomas Characterized by Somatic Tuberous Sclerosis Gene Mutations? Am. J. Surg. Pathol. 2018;42:911–917. doi: 10.1097/PAS.0000000000001067. PubMed DOI
Tretiakova M.S. Eosinophilic solid and cystic renal cell carcinoma mimicking epithelioid angiomyolipoma: Series of 4 primary tumors and 2 metastases. Hum. Pathol. 2018;80:65–75. doi: 10.1016/j.humpath.2018.05.023. PubMed DOI
Li Y., Reuter V.E., Matoso A., Netto G.J., Epstein J.I., Argani P. Re-evaluation of 33 ‘unclassified’ eosinophilic renal cell carcinomas in young patients. Histopathology. 2018;72:588–600. doi: 10.1111/his.13395. PubMed DOI PMC
Williamson S.R. Renal cell carcinomas with a mesenchymal stromal component: What do we know so far? Pathology. 2019;51:453–462. doi: 10.1016/j.pathol.2019.04.006. PubMed DOI
Williamson S.R., Hornick J.L., Eble J.N., Gupta N.S., Rogers C.G., True L., Grignon D.J., Cheng L. Renal cell carcinoma with angioleiomyoma-like stroma and clear cell papillary renal cell carcinoma: Exploring SDHB protein immunohistochemistry and the relationship to tuberous sclerosis complex. Hum. Pathol. 2018;75:10–15. doi: 10.1016/j.humpath.2017.11.013. PubMed DOI
Parilla M., Alikhan M., Al-Kawaaz M., Patil S., Kadri S., Ritterhouse L.L., Segal J., Fitzpatrick C., Antic T. Genetic Underpinnings of Renal Cell Carcinoma With Leiomyomatous Stroma. Am. J. Surg. Pathol. 2019;43:1135–1144. doi: 10.1097/PAS.0000000000001255. PubMed DOI
Verkarre V., Mensah A., Leroy X., Sibony M., Vasiliu V., Comperat E., Richard S., Mejean A. A Clinico-Pathologic Study of 17 Patients with Renal Cell Carcinoma Associated With Leiomyomatous Stroma Identifies a Strong Association With Tuberous Sclerosis. Lab. Invest. 2015;95:266A.
Jia L., Jayakumaran G., Al-Ahmadie H., Fine S.W., Gopalan A., Sirintrapun S.J., Tickoo S., Reuter V., Cheng Y.B. Expanding the Morphologic Spectrum of Sporadic Renal Cell Carcinoma (RCC) Harboring Somatic TSC or MTOR Alterations: Analysis of 8 Cases with Clear Cytoplasm and Leiomyomatous Stroma. Mod. Pathol. 2019;32:78–79.
Chen Y.B., Mirsadraei L., Jayakumaran G., Al-Ahmadie H.A., Fine S.W., Gopalan A., Sirintrapun S.J., Tickoo S.K., Reuter V.E. Somatic Mutations of TSC2 or MTOR Characterize a Morphologically Distinct Subset of Sporadic Renal Cell Carcinoma with Eosinophilic and Vacuolated Cytoplasm. Am. J. Surg. Pathol. 2019;43:121–131. doi: 10.1097/PAS.0000000000001170. PubMed DOI PMC
He H., Trpkov K., Martinek P., Isikci O.T., Maggi-Galuzzi C., Alaghehbandan R., Gill A.J., Tretiakova M., Lopez J.I., Williamson S.R., et al. “High-grade oncocytic renal tumor”: Morphologic, immunohistochemical, and molecular genetic study of 14 cases. Virchows Arch. 2018;473:725–738. doi: 10.1007/s00428-018-2456-4. PubMed DOI
Trpkov K., Bonert M., Gao Y., Kapoor A., He H., Yilmaz A., Gill A.J., Williamson S.R., Comperat E., Tretiakova M., et al. High-grade oncocytic tumour (HOT) of kidney in a patient with tuberous sclerosis complex. Histopathology. 2019;75:440–442. doi: 10.1111/his.13876. PubMed DOI
Hakimi A.A., Tickoo S.K., Jacobsen A., Sarungbam J., Sfakianos J.P., Sato Y., Morikawa T., Kume H., Fukayama M., Homma Y., et al. TCEB1-mutated renal cell carcinoma: A distinct genomic and morphological subtype. Mod. Pathol. 2015;28:845–853. doi: 10.1038/modpathol.2015.6. PubMed DOI PMC
Favazza L., Chitale D.A., Barod R., Rogers C.G., Kalyana-Sundaram S., Palanisamy N., Gupta N.S., Williamson S.R. Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: A histological review of tumors from the Cancer Genome Atlas database. Mod. Pathol. 2017;30:1603–1612. doi: 10.1038/modpathol.2017.72. PubMed DOI
Hirsch M.S., Barletta J.A., Gorman M., Dal Cin P. Renal Cell Carcinoma With Monosomy 8 and CAIX Expression: A Distinct Entity or Another Member or the Clear Cell Tubulopapillary RCC/RAT Family? Mod. Pathol. 2015;28:229A.
Williamson S.R., Grignon D.J., Cheng L., Favazza L., Gondim D.D., Carskadon S., Gupta N.S., Chitale D.A., Kalyana-Sundaram S., Palanisamy N. Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene: A Novel Mechanism of Tumor Pathogenesis? Am. J. Surg. Pathol. 2017;41:287–298. doi: 10.1097/PAS.0000000000000776. PubMed DOI
Argani P., Reuter V.E., Zhang L., Sung Y.S., Ning Y., Epstein J.I., Netto G.J., Antonescu C.R. TFEB-amplified Renal Cell Carcinomas: An Aggressive Molecular Subset Demonstrating Variable Melanocytic Marker Expression and Morphologic Heterogeneity. Am. J. Surg. Pathol. 2016;40:1484–1495. doi: 10.1097/PAS.0000000000000720. PubMed DOI PMC
Gupta S., Johnson S.H., Vasmatzis G., Porath B., Rustin J.G., Rao P., Costello B.A., Leibovich B.C., Thompson R.H., Cheville J.C., et al. TFEB-VEGFA (6p21.1) co-amplified renal cell carcinoma: A distinct entity with potential implications for clinical management. Mod. Pathol. 2017;30:998–1012. doi: 10.1038/modpathol.2017.24. PubMed DOI
Peckova K., Vanecek T., Martinek P., Spagnolo D., Kuroda N., Brunelli M., Vranic S., Djuricic S., Rotterova P., Daum O., et al. Aggressive and nonaggressive translocation t(6;11) renal cell carcinoma: Comparative study of 6 cases and review of the literature. Ann. Diagn. Pathol. 2014;18:351–357. doi: 10.1016/j.anndiagpath.2014.10.002. PubMed DOI
Skala S.L., Xiao H., Udager A.M., Dhanasekaran S.M., Shukla S., Zhang Y., Landau C., Shao L., Roulston D., Wang L., et al. Detection of 6 TFEB-amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: Systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod. Pathol. 2018;31:179–197. doi: 10.1038/modpathol.2017.99. PubMed DOI
Durinck S., Stawiski E.W., Pavia-Jimenez A., Modrusan Z., Kapur P., Jaiswal B.S., Zhang N., Toffessi-Tcheuyap V., Nguyen T.T., Pahuja K.B., et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 2015;47:13–21. doi: 10.1038/ng.3146. PubMed DOI PMC
Gupta S., Argani P., Jungbluth A.A., Chen Y.B., Tickoo S.K., Fine S.W., Gopalan A., Al-Ahmadie H.A., Sirintrapun S.J., Sanchez A., et al. TFEB Expression Profiling in Renal Cell Carcinomas: Clinicopathologic Correlations. Am. J. Surg. Pathol. 2019;43:1445–1461. doi: 10.1097/PAS.0000000000001307. PubMed DOI PMC
Andeen N.K., Qu X., Antic T., Tykodi S.S., Fang M., Tretiakova M.S. Clinical Utility of Chromosome Genomic Array Testing for Unclassified and Advanced-Stage Renal Cell Carcinomas. Arch. Pathol. Lab. Med. 2019;143:494–504. doi: 10.5858/arpa.2018-0104-OA. PubMed DOI
Moch H., Amin M., Argani P., Cheville J., Delahunt B., Martignoni G., Srigley J., Tan P., Tickoo S. Renal cell tumors. In: Moch H., Humphrey P.A., Ulbright T.M., Reuter V.E., editors. WHO Classification of Tumours of the Urinary System and Male Genital Organs. 4th ed. International Agency for Research on Cancer; Lyon, France: 2016. pp. 14–17.
Debelenko L.V., Raimondi S.C., Daw N., Shivakumar B.R., Huang D., Nelson M., Bridge J.A. Renal cell carcinoma with novel VCL-ALK fusion: New representative of ALK-associated tumor spectrum. Mod. Pathol. 2011;24:430–442. doi: 10.1038/modpathol.2010.213. PubMed DOI
Sugawara E., Togashi Y., Kuroda N., Sakata S., Hatano S., Asaka R., Yuasa T., Yonese J., Kitagawa M., Mano H., et al. Identification of anaplastic lymphoma kinase fusions in renal cancer: Large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer. 2012;118:4427–4436. doi: 10.1002/cncr.27391. PubMed DOI
Sukov W.R., Hodge J.C., Lohse C.M., Akre M.K., Leibovich B.C., Thompson R.H., Cheville J.C. ALK alterations in adult renal cell carcinoma: Frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod. Pathol. 2012;25:1516–1525. doi: 10.1038/modpathol.2012.107. PubMed DOI
Bodokh Y., Ambrosetti D., Kubiniek V., Tibi B., Durand M., Amiel J., Pertuit M., Barlier A., Pedeutour F. ALK-TPM3 rearrangement in adult renal cell carcinoma: Report of a new case showing loss of chromosome 3 and literature review. Cancer Genet. 2018;221:31–37. doi: 10.1016/j.cancergen.2017.11.010. PubMed DOI
Cajaiba M.M., Jennings L.J., George D., Perlman E.J. Expanding the spectrum of ALK-rearranged renal cell carcinomas in children: Identification of a novel HOOK1-ALK fusion transcript. Genes Chromosomes Cancer. 2016;55:814–817. doi: 10.1002/gcc.22382. PubMed DOI PMC
Cajaiba M.M., Jennings L.J., Rohan S.M., Perez-Atayde A.R., Marino-Enriquez A., Fletcher J.A., Geller J.I., Leuer K.M., Bridge J.A., Perlman E.J. ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer. 2016;55:442–451. doi: 10.1002/gcc.22346. PubMed DOI
Hodge J.C., Pearce K.E., Sukov W.R. Distinct ALK-rearranged and VCL-negative papillary renal cell carcinoma variant in two adults without sickle cell trait. Mod. Pathol. 2013;26:604–605. doi: 10.1038/modpathol.2012.144. PubMed DOI
Jeanneau M., Gregoire V., Desplechain C., Escande F., Tica D.P., Aubert S., Leroy X. ALK rearrangements-associated renal cell carcinoma (RCC) with unique pathological features in an adult. Pathol. Res. Pr. 2016;212:1064–1066. doi: 10.1016/j.prp.2016.07.015. PubMed DOI
Kuroda N., Liu Y., Tretiakova M., Ulamec M., Takeuchi K., Przybycin C., Magi-Galluzzi C., Agaimy A., Yilmaz A., Trpkov K., et al. Clinicopathological Study of Seven Cases of ALK-positive Renal Tumor Identification of New Fusion Partners including CLIP1 and KIF5B Genes. Mod. Pathol. 2019;32:85.
Kuroda N., Sugawara E., Kusano H., Yuba Y., Yorita K., Takeuchi K. A review of ALK-rearranged renal cell carcinomas with a focus on clinical and pathobiological aspects. Pol. J. Pathol. 2018;69:109–113. doi: 10.5114/pjp.2018.76693. PubMed DOI
Kusano H., Togashi Y., Akiba J., Moriya F., Baba K., Matsuzaki N., Yuba Y., Shiraishi Y., Kanamaru H., Kuroda N., et al. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am. J. Surg. Pathol. 2016;40:761–769. doi: 10.1097/PAS.0000000000000610. PubMed DOI
Lee C., Park J.W., Suh J.H., Nam K.H., Moon K.C. ALK-Positive Renal Cell Carcinoma in a Large Series of Consecutively Resected Korean Renal Cell Carcinoma Patients. Korean J. Pathol. 2013;47:452–457. doi: 10.4132/KoreanJPathol.2013.47.5.452. PubMed DOI PMC
Marino-Enriquez A., Ou W.B., Weldon C.B., Fletcher J.A., Perez-Atayde A.R. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer. 2011;50:146–153. doi: 10.1002/gcc.20839. PubMed DOI
Pal S.K., Bergerot P., Dizman N., Bergerot C., Adashek J., Madison R., Chung J.H., Ali S.M., Jones J.O., Salgia R. Responses to Alectinib in ALK-rearranged Papillary Renal Cell Carcinoma. Eur. Urol. 2018;74:124–128. doi: 10.1016/j.eururo.2018.03.032. PubMed DOI
Smith N.E., Deyrup A.T., Marino-Enriquez A., Fletcher J.A., Bridge J.A., Illei P.B., Netto G.J., Argani P. VCL-ALK renal cell carcinoma in children with sickle-cell trait: The eighth sickle-cell nephropathy? Am. J. Surg. Pathol. 2014;38:858–863. doi: 10.1097/PAS.0000000000000179. PubMed DOI PMC
Thorner P.S., Shago M., Marrano P., Shaikh F., Somers G.R. TFE3-positive renal cell carcinomas are not always Xp11 translocation carcinomas: Report of a case with a TPM3-ALK translocation. Pathol. Res. Pr. 2016;212:937–942. doi: 10.1016/j.prp.2016.07.004. PubMed DOI
Yu W., Wang Y., Jiang Y., Zhang W., Li Y. Genetic analysis and clinicopathological features of ALK-rearranged renal cell carcinoma in a large series of resected Chinese renal cell carcinoma patients and literature review. Histopathology. 2017;71:53–62. doi: 10.1111/his.13185. PubMed DOI
Cheng J., Zhang J., Han Y., Wang X., Ye X., Meng Y., Parwani A., Han Z., Feng Q., Huang K. Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis. Cancer Res. 2017;77:e91–e100. doi: 10.1158/0008-5472.CAN-17-0313. PubMed DOI PMC
Shao W., Han Z., Cheng J., Cheng L., Wang T., Sun L., Lu Z., Zhang J., Zhang D., Huang K. Integrative analysis of pathological images and multi-dimensional genomic data for early-stage cancer prognosis. Ieee Trans. Med. Imaging. 2019 doi: 10.1109/TMI.2019.2920608. PubMed DOI
VENUSS rising for papillary renal cell carcinoma prognostication?