Reappraisal of Morphologic Differences Between Renal Medullary Carcinoma, Collecting Duct Carcinoma, and Fumarate Hydratase-deficient Renal Cell Carcinoma
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
PubMed
29309300
PubMed Central
PMC8015937
DOI
10.1097/pas.0000000000001000
Knihovny.cz E-zdroje
- MeSH
- biopsie MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- dospělí MeSH
- dřeň ledvin enzymologie patologie MeSH
- fenotyp MeSH
- fumarasa nedostatek genetika MeSH
- genetická predispozice k nemoci MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk klasifikace enzymologie genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- mutační analýza DNA MeSH
- nádorové biomarkery nedostatek genetika MeSH
- nádory ledvin klasifikace enzymologie genetika patologie MeSH
- prediktivní hodnota testů MeSH
- retrospektivní studie MeSH
- sběrací ledvinové kanálky enzymologie patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stupeň nádoru MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Austrálie MeSH
- Brazílie MeSH
- Evropa MeSH
- Kanada MeSH
- Spojené státy americké MeSH
- Názvy látek
- fumarasa MeSH
- nádorové biomarkery MeSH
Renal medullary carcinomas (RMCs) and collecting duct carcinomas (CDCs) are rare subsets of lethal high-stage, high-grade distal nephron-related adenocarcinomas with a predilection for the renal medullary region. Recent findings have established an emerging group of fumarate hydratase (FH)-deficient tumors related to hereditary leiomyomatosis and renal cell carcinoma (HLRCC-RCCs) syndrome within this morphologic spectrum. Recently developed, reliable ancillary testing has enabled consistent separation between these tumor types. Here, we present the clinicopathologic features and differences in the morphologic patterns between RMC, CDC, and FH-deficient RCC in consequence of these recent developments. This study included a total of 100 cases classified using contemporary criteria and ancillary tests. Thirty-three RMCs (SMARCB1/INI1-deficient, hemoglobinopathy), 38 CDCs (SMARCB1/INI1-retained), and 29 RCCs defined by the FH-deficient phenotype (FH/2SC or FH/2SC with FH mutation, regardless of HLRCC syndromic stigmata/history) were selected. The spectrum of morphologic patterns was critically evaluated, and the differences between the morphologic patterns present in the 3 groups were analyzed statistically. Twenty-five percent of cases initially diagnosed as CDC were reclassified as FH-deficient RCC on the basis of our contemporary diagnostic approach. Among the different overlapping morphologic patterns, sieve-like/cribriform and reticular/yolk sac tumor-like patterns favored RMCs, whereas intracystic papillary and tubulocystic patterns favored FH-deficient RCC. The tubulopapillary pattern favored both CDCs and FH-deficient RCCs, and the multinodular infiltrating papillary pattern favored CDCs. Infiltrating glandular and solid sheets/cords/nested patterns were not statistically different among the 3 groups. Viral inclusion-like macronucleoli, considered as a hallmark of HLRCC-RCCs, were observed significantly more frequently in FH-deficient RCCs. Despite the overlapping morphology found among these clinically aggressive infiltrating high-grade adenocarcinomas of the kidney, reproducible differences in morphology emerged between these categories after rigorous characterization. Finally, we recommend that definitive diagnosis of CDC should only be made if RMC and FH-deficient RCC are excluded.
Anatomic Pathology Mario Penna Institute Hospital Luxemburgo Belo Horizonte Brazil
Brigham and Women's Hospital Boston MA
Calgary Laboratory Services University of Calgary Calgary AB Canada
Charles University Hospital Pilsen Czech Republic
Department of Pathology AC Camargo Cancer Center São Paulo
Department of Pathology and Laboratory Medicine Cedars Sinai Medical Center Los Angeles CA
Department of Pathology Fondazione IRCCS Istituto Nazionale dei Tumori Milan Italy
Department of Pathology Houston Methodist Hospital Weill Medical College of Cornell University
Department of Pathology Loyola University Maywood IL
Department of Pathology University of Chicago Chicago
Departments of Pathology and Urology VCU School of Medicine Richmond VA
Division of Pathological Anatomy University of Florence Florence Italy
Douglass Hanly Moir Pathology Sydney NSW Australia
Emory University School of Medicine Atlanta GA
Indiana University School of Medicine Indianapolis IN
Institute of Anatomic Pathology Piracicaba Brazil
Institute of Pathology Friedrich Alexander University Erlangen Germany
Institute of Pathology Kantonsspital St Gallen St Gallen Switzerland
Johns Hopkins Hospital Baltimore MD
MD Anderson Cancer Center Houston TX
Memorial Sloan Kettering Cancer Center New York NY
Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland OH
Zobrazit více v PubMed
Davis CJ Jr, Mostofi FK, Sesterhenn IA. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol. 1995; 19:1–11. PubMed
Swartz MA, Karth J, Schneider DT, et al. Renal medullary carcinoma: clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications. Urology. 2002; 60:1083–1089. PubMed
Watanabe IC, Billis A, Guimaraes MS, et al. Renal medullary carcinoma: report of seven cases from Brazil. Mod Pathol. 2007; 20:914–920. PubMed
Amin MB, Merino MJ. Renal medullary carcinoma. In: Moch H, Humphrey PA, Ulbright TM, et al., eds. WHO Classification. Tumors of the Urinary System and Male Genital Organs. Lyon: IARC; 2016:31–32.
Srigley JR, Delahunt B, Eble JN, et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol. 2013; 37:1469–1489. PubMed
Karakiewicz PI, Trinh QD, Rioux-Leclercq N, et al. Collecting duct renal cell carcinoma: a matched analysis of 41 cases. Eur Urol. 2007;52:1140–1145. PubMed
Gupta R, Billis A, Shah R, et al. Carcinoma of the collecting ducts of Bellini and renal medullary carcinoma. Am J Surg Pathol. 2012; 36:1265–1278. PubMed
Fleming S, Amin MB, Storkel S. Collecting duct carcinoma. In: Moch H, Humphrey PA, Ulbright TM, et al., eds. WHO Classification. Tumors of the Urinary System and Male Genital Organs. Lyon: IARC; 2016:29–30.
Trpkov K, Hes O, Agaimy A, et al. Fumarate hydratase-deficient renal cell carcinoma is strongly correlated with fumarate hydratase mutation and hereditary leiomyomatosis and renal cell carcinoma syndrome. Am J Surg Pathol. 2016;40:865–875. PubMed
Smith SC, Trpkov K, Chen Y-B, et al. Tubulocystic carcinoma of the kidney with poorly differentiated foci: a frequent morphologic pattern of fumarate hydratase-deficient renal cell carcinoma. Am J Surg Pathol. 2016; 40:1457–1472. PubMed PMC
Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001; 98:3387–3392. PubMed PMC
Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30:406–410. PubMed
Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73:95–106. PubMed PMC
Wei MH, Toure O, Glenn GM, et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet. 2006;43:18–27. PubMed PMC
Merino MJ, Torres-Cabala C, Pinto P, Linehan WM. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol. 2007;31:1578–1585. PubMed
Lehtonen HJ. Hereditary leiomyomatosis and renal cell cancer: update on clinical and molecular characteristics. Fam Cancer. 2011;10:397–411. PubMed
Merino MJ, Linehan WM. Hereditary leiomyomatosis and renal cell carcinoma–associated renal cell carcinoma. In: Moch H, Humphrey PA, Ulbright TM, et al., eds. WHO Classification. Tumors of the Urinary System and Male Genital Organs. Lyon: IARC; 2016:25–26.
Smith SC, Trpkov K, Mehra R, et al. Is tubulocystic carcinoma with dedifferentiation a form of HLRCC/fumarate hydratase-deficient RCC? Mod Pathol. 2015; suppl 2s:260A.
Chen YB, Brannon AR, Toubaji A, et al. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am J Surg Pathol. 2014;38:627–637. PubMed PMC
Chen YB, Kong M, Bialik A, et al. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated renal cancer: a comparison of fumarate hydratase (FH) and S-(2-succino)-cysteine (2SC) immunohistochemistry as ancillary tools. Mod Pathol. 2015;28(suppl 2):211A.
Carvalho JC, Thomas DG, McHugh JB, et al. p63, CK7, PAX8 and INI-1: an optimal immunohistochemical panel to distinguish poorly differentiated urothelial cell carcinoma from high-grade tumours of the renal collecting system. Histopathology. 2012; 60:597–608. PubMed
Amin MB, Smith SC, Agaimy A, et al. Collecting duct carcinoma versus renal medullary carcinoma: an appeal for nosologic and biological clarity. Am J Surg Pathol. 2014; 38:871–874. PubMed
Delahunt B, Cheville JC, Martignoni G, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37:1490–1504. PubMed
John N A review of clinical profile in sickle cell traits. Oman Med J. 2010; 25:3–8. PubMed PMC
Calderaro J, Moroch J, Pierron G, et al. SMARCB1/INI1 inactivation in renal medullary carcinoma. Histopathology. 2012;61: 428–435. PubMed
Liu Q, Galli S, Srinivasan R, et al. Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation. Am J Surg Pathol. 2013; 37:368–374. PubMed PMC
Rao P, Tannir NM, Tamboli P. Expression of OCT3/4 in renal medullary carcinoma represents a potential diagnostic pitfall. Am J Surg Pathol. 2012; 36:583–588. PubMed
Elwood H, Chaux A, Schultz L, et al. Immunohistochemical analysis of SMARCB1/INI-1 expression in collecting duct carcinoma. Urology. 2011;78: e471–e475. PubMed
Agaimy A The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity. Adv Anat Pathol. 2014; 21:394–410. PubMed
Sirohi D, Smith SC, Ohe C, et al. Renal cell carcinoma, unclassified with medullary phenotype: poorly-differentiated adenocarcinomas overlapping with renal medullary carcinoma. Hum Pathol. 2017; 67:134–145. PubMed
Amin MB, Varma VD, Tickoo SK, et al. Collecting duct carcinoma of the kidney. Adv Anat Pathol. 1997;4:85–94.
Nagai R, Brock JW, Blatnik M, et al. Succination of protein thiols during adipocyte maturation: a biomarker of mitochondrial stress. J Biol Chem. 2007; 282:34219–34228. PubMed
Bardella C, El-Bahrawy M, Frizzell N, et al. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J Pathol. 2011;225:4–11. PubMed
Joseph NM, Solomon DA, Frizzell N, et al. Morphology and Immunohistochemistry for 2SC and FH Aid in Detection of Fumarate Hydratase Gene Aberrations in Uterine Leiomyomas From Young Patients. Am J Surg Pathol. 2015;39:1529–39. PubMed
Oteri KL, Linehan MW, Merino MJ. IHC helps to identified renal tumors associated with HLRCC syndrome. Mod Pathol. 2014;27(suppl 2):243A.
Smith SC, Sirohi D, Ohe C et al. A distinctive, low-grade oncocytic fumarate hydratase-deficient renal cell carcinoma, morphologically reminiscent of succinate dehydrogenase-deficient renal cell carcinoma. Histopathol. 2017;71(1):42–52. PubMed
Vocke CD, Ricketts CJ, Merino MJ et al. Comprehensive genomic and phenotypic characterization of germline FH deletion in hereditary leiomyomatosis and renal cell carcinoma. Genes Chromosomes Cancer. 2017;56(6):484–492. PubMed PMC
Laury AR, Perets R, Piao H, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35:816–826. PubMed
Reuter VE, Argani P, Zhou M et al. Best practices recommendations in the application of immunohistochemistry in the kidney tumors: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38(8): e35–49. PubMed
Ozcan A, Shen SS, Hamilton C, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol. 2011;24:751–764. PubMed
Tong GX, Yu WM, Beaubier NT, et al. Expression of PAX8 in normal and neoplastic renal tissues: an immunohistochemical study. Mod Pathol. 2009;22(9):1218–1227. PubMed
Li G, Gentil-Perret A, Lambert C, Genin C, Tostain J. S100A1 and KIT gene expressions in common subtypes of renal tumours. Eur J Surg Oncol. 2005;31(3):299–303. PubMed
Rocca PC, Brunelli M, Gobbo S, et al. Diagnostic utility of S100A1 expression in renal cell neoplasms: an immunohistochemical and quantitative RT-PCR study. Mod Pathol. 2007;20(7):722–728 PubMed
Molecular Genetics of Renal Cell Tumors: A Practical Diagnostic Approach