The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
NV18-05-00379
Ministerstvo Zdravotnictví Ceské Republiky
AOTEU-R-2016-064
AOTRAUMA Switzerland
665860
Horizon 2020 Framework Programme
PubMed
30658476
PubMed Central
PMC6359562
DOI
10.3390/ijms20020391
PII: ijms20020391
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatibility, injectable bone cements, kinetics, morphology, rheology, thixotropic,
- MeSH
- biokompatibilní materiály chemie MeSH
- fosforečnany vápenaté chemie MeSH
- koncentrace vodíkových iontů MeSH
- kostní cementy chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mechanické jevy MeSH
- molekulární struktura MeSH
- polyestery chemie MeSH
- polyethylenglykoly chemická syntéza chemie MeSH
- polyglactin 910 chemická syntéza chemie MeSH
- polymerizace MeSH
- reologie MeSH
- testování materiálů MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- fosforečnany vápenaté MeSH
- kostní cementy MeSH
- poly(lactic-glycolic acid)-poly(ethyleneglycol) copolymer MeSH Prohlížeč
- polyestery MeSH
- polyethylene glycol-poly(lactide-co-glycolide) MeSH Prohlížeč
- polyethylenglykoly MeSH
- polyglactin 910 MeSH
- tricalcium phosphate MeSH Prohlížeč
The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
CEITEC ⁻ Brno University of Technology Purkynova 656 123 612 00 Brno Czech Republic
Trauma Surgery Department The University Hospital Brno Jihlavska 340 20 325 00 Brno Czech Republic
Zobrazit více v PubMed
Bohner M., Gbureck U., Barralet J. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials. 2005;26:6423–6429. doi: 10.1016/j.biomaterials.2005.03.049. PubMed DOI
Ginebra M., Canal C., Espanol M., Pastorino D., Montufar E. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012;64:1090–1110. doi: 10.1016/j.addr.2012.01.008. PubMed DOI
O’Hara R., Buchanan F., Dunne N. Injectable calcium phosphate cements for spinal bone repair. Biomater. Bone Regen. 2014:26–61. doi: 10.1533/9780857098104.1.26. DOI
O’Hara R., Orr J., Buchanan F., Wilcox R., Barton D., Dunne N. Development of a bovine collagen–apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012;8:4043–4052. doi: 10.1016/j.actbio.2012.07.003. PubMed DOI
Perez R., Ginebra M. Injectable collagen/α-tricalcium phosphate cement: Collagen–mineral phase interactions and cell response. J. Mater. Sci. Mater. Med. 2013;24:381–393. doi: 10.1007/s10856-012-4799-8. PubMed DOI
Bigi A., Bracci B., Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893–2899. doi: 10.1016/j.biomaterials.2003.09.059. PubMed DOI
An J., Wolke J., Jansen J., Leeuwenburgh S. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J. Mater. Sci. Mater. Med. 2016;27:58. doi: 10.1007/s10856-016-5665-x. PubMed DOI PMC
Song H., Esfakur Rahman A., Lee B. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J. Mater. Sci. Mater. Med. 2009;20:935–941. doi: 10.1007/s10856-008-3642-8. PubMed DOI
Wang X., Ye J., Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J. Biomed. Mater. Res. Part B. 2006;78B:259–264. doi: 10.1002/jbm.b.30481. PubMed DOI
Shahbazi S., Moztarzadeh F., Sadeghi G., Jafari Y. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Mater. Sci. Eng. C. 2016;69:1201–1209. doi: 10.1016/j.msec.2016.08.035. PubMed DOI
Maazouz Y., Montufar E., Malbert J., Espanol M., Ginebra M. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomater. 2017;49:563–574. doi: 10.1016/j.actbio.2016.11.043. PubMed DOI
Huh H., Zhao L., Kim S. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 2015;126:130–140. doi: 10.1016/j.carbpol.2015.03.033. PubMed DOI
Qiao M., Chen D., Ma X., Liu Y. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int. J. Pharm. 2005;294:103–112. doi: 10.1016/j.ijpharm.2005.01.017. PubMed DOI
Rizzarelli P., Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal. Chim. Acta. 2014;808:18–43. doi: 10.1016/j.aca.2013.11.001. PubMed DOI
Yu L., Chang G., Zhang H., Ding J. Temperature-induced spontaneous sol-gel transitions of poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Part A Polym. Chem. 2007;45:1122–1133. doi: 10.1002/pola.21876. DOI
Michlovská L., Vojtová L., Humpa O., Kučerík J., Žídek J., Jančář J. Hydrolytic stability of end-linked hydrogels from PLGA–PEG–PLGA macromonomers terminated by α,ω-itaconyl groups. RSC Adv. 2016;6:16808–16816. doi: 10.1039/C5RA26222D. DOI
Chamradová I., Vojtová L., Částková K., Diviš P., Peterek M., Jančář J. The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. Colloid Polym. Sci. 2017;295:107–115. doi: 10.1007/s00396-016-3983-7. DOI
Michlovská L., Vojtová L., Mravcová L., Hermanová S., Kučerík J., Jančář J. Functionalization Conditions of PLGA–PEG–PLGA Copolymer with Itaconic Anhydride. Macromol. Symp. 2010;295:119–124. doi: 10.1002/masy.200900071. DOI
Montufar E., Maazouz Y., Ginebra M. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013;9:6188–6198. doi: 10.1016/j.actbio.2012.11.028. PubMed DOI
Durucan C., Brown P. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000;11:365–371. doi: 10.1023/A:1008934024440. PubMed DOI
Wei X., Ugurlu O., Akinc M. Hydrolysis of α-Tricalcium Phosphate in Simulated Body Fluid and Dehydration Behavior during the Drying Process. J. Am. Ceram. Soc. 2007;90:2315–2321. doi: 10.1111/j.1551-2916.2007.01682.x. DOI
Espanol M., Perez R., Montufar E., Marichal C., Sacco A., Ginebra M. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009;5:2752–2762. doi: 10.1016/j.actbio.2009.03.011. PubMed DOI
Carte D., Hayes W. The compressive behavior of bone as a two-phase porous structure. J. Bone Jt. Surg. Ser. A. 1977;59:954–962. doi: 10.2106/00004623-197759070-00021. PubMed DOI
Diez-Escudero A., Espanol M., Beats S., Ginebra M.P. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition. Acta Biomater. 2017;60:81–92. doi: 10.1016/j.actbio.2017.07.033. PubMed DOI
Silver I.A., Murrills R.J., Etherington D.J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 1988;175:266–276. doi: 10.1016/0014-4827(88)90191-7. PubMed DOI
Sariibrahimoglu K., Leeuwenburgh S.C., Wolke J.G., Yubao L., Jansen J.A. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J. Biomed. Mater. Res. Part A. 2012;100:712–719. doi: 10.1002/jbm.a.34009. PubMed DOI
Sadowska J.M., Guillem-Marti J., Montufar E.B., Espanol M., Ginebra M.P. Biomimetic versus Sintered Calcium Phosphates: The in vitro Behavior of Osteoblasts and Mesenchymal Stem Cells. Tissue Eng. Part A. 2017;23:1297–1309. doi: 10.1089/ten.tea.2016.0406. PubMed DOI
Bohner M., Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–1563. doi: 10.1016/j.biomaterials.2004.05.010. PubMed DOI
O’Neill R., McCarthy H., Montufar E., Ginebra M., Wilson D., Lennon A., Dunne N. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater. 2017;50:1–19. doi: 10.1016/j.actbio.2016.11.019. PubMed DOI
Ginebra M., Fernández E., De Maeyer E., Verbeeck R., Boltong M., Ginebra J., Driessens F., Planell J. Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement. J. Dent. Res. 2016;76:905–912. doi: 10.1177/00220345970760041201. PubMed DOI
Liu C., Shao H., Chen F., Zheng H. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials. 2006;27:5003–5013. doi: 10.1016/j.biomaterials.2006.05.043. PubMed DOI
Sarda S., Fernández E., Llorens J., Martínez S., Nilsson M., Planell J. Rheological properties of an apatitic bone cement during initial setting. J. Mater. Sci. Mater. Med. 2001;12:905–909. doi: 10.1023/A:1012832325957. PubMed DOI
Driessens F., Planell J., Boltong M., Khairoun I., Ginebra M. Osteotransductive bone cements. Proc. Inst. Mech. Eng. Part H. 2016;212:427–435. doi: 10.1243/0954411981534196. PubMed DOI
Zolnik B.S., Burgess D.J. Effect of acidic pH on PLGA microsphere degradation and release. J. Control. Release. 2007;122:338–344. doi: 10.1016/j.jconrel.2007.05.034. PubMed DOI
Yoo J.Y., Kim J.M., Seo K.S., Jeong Y.K., Lee H.B., Khang G. Characterization of degradation behavior for PLGA in various pH condition by simple liquid chromatography method. Bio-Med. Mater. Eng. 2005;15:279–288. PubMed
Smith B.T., Lu A., Watson E., Santoro M., Melchiorri A.J., Grosfeld E.C., van den Beucken J.J.J.P., Jansen J.A., Scott D.W., Fisher J.P., et al. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomater. 2018;78:341–350. doi: 10.1016/j.actbio.2018.07.054. PubMed DOI PMC
Frankenburg E.P., Goldstein S.A., Bauer T.W., Harris S.A., Poser R.D. Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Jt. Surg. Am. 1998;80:1112–1124. doi: 10.2106/00004623-199808000-00004. PubMed DOI
Kovtun A., Goeckelmann M., Niclas A., Montufar E., Ginebra M., Planell J., Santin M., Ignatius A. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomater. 2015;12:242–249. doi: 10.1016/j.actbio.2014.10.034. PubMed DOI PMC
Schumacher M., Uhl F., Detsch R., Deisinger U., Ziegler G. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 2010;21:3039–3048. doi: 10.1007/s10856-010-4153-y. PubMed DOI
ISO13314:2011 . Mechanical Testing of Metals—Ductility Testing–Compression Test for Porous and Cellular Metals. ISO; Geneva, Switzerland: 2011.