The Influence of Oxygen Concentration during MAX Phases (Ti₃AlC₂) Preparation on the α-Al₂O₃ Microparticles Content and Specific Surface Area of Multilayered MXenes (Ti₃C₂Tx)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2014/13/D/ST5/02824
Narodowe Centrum Nauki
PubMed
30678115
PubMed Central
PMC6384598
DOI
10.3390/ma12030353
PII: ma12030353
Knihovny.cz E-zdroje
- Klíčová slova
- MAX phases, MXenes, Ti3AlC2, Ti3C2Tx, porosity, α-Al2O3 particles,
- Publikační typ
- časopisecké články MeSH
The high specific surface area of multilayered two-dimensional carbides called MXenes, is a critical feature for their use in energy storage systems, especially supercapacitors. Therefore, the possibility of controlling this parameter is highly desired. This work presents the results of the influence of oxygen concentration during Ti₃AlC₂ ternary carbide-MAX phase preparation on α-Al₂O₃ particles content, and thus the porosity and specific surface area of the Ti₃C₂Tx MXenes. In this research, three different Ti₃AlC₂ samples were prepared, based on TiC-Ti₂AlC powder mixtures, which were conditioned and cold pressed in argon, air and oxygen filled glove-boxes. As-prepared pellets were sintered, ground, sieved and etched using hydrofluoric acid. The MAX phase and MXene samples were analyzed using scanning electron microscopy and X-ray diffraction. The influence of the oxygen concentration on the MXene structures was confirmed by Brunauer-Emmett-Teller surface area determination. It was found that oxygen concentration plays an important role in the formation of α-Al₂O₃ inclusions between MAX phase layers. The mortar grinding of the MAX phase powder and subsequent MXene fabrication process released the α-Al₂O₃ impurities, which led to the formation of the porous MXene structures. However, some non-porous α-Al₂O₃ particles remained inside the MXene structures. Those particles were found ingrown and irremovable, and thus decreased the MXene specific surface area.
Zobrazit více v PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:1–17. doi: 10.1038/natrevmats.2016.98. DOI
Lukatskaya M.R., Mashtalir O., Ren C.E., Dall’Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013;341:1502–1505. doi: 10.1126/science.1241488. PubMed DOI
Barsoum M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA; Berlin, Germany: 2013.
Hu M., Hu T., Li Z., Yang Y., Cheng R., Yang J., Cui C., Wang X. Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2TxMXene. ACS Nano. 2018;12:3578–3586. doi: 10.1021/acsnano.8b00676. PubMed DOI
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Dall’Agnese Y., Lukatskaya M.R., Cook K.M., Taberna P.-L., Gogotsi Y., Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014;48:118–122. doi: 10.1016/j.elecom.2014.09.002. DOI
Natu V., Clites M., Pomerantseva E., Barsoum M.W. MesoporousMXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 2018;6:230–235. doi: 10.1080/21663831.2018.1434249. DOI
Dong Y., Zheng S., Qin J., Zhao X., Shi H., Wang X., Chen J., Wu Z.-S. All-MXene-Based Integrated Electrode Constructed by Ti3C2Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. ACS Nano. 2018;12:2381–2388. doi: 10.1021/acsnano.7b07672. PubMed DOI
Zhang C.J., Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019;16:102–125. doi: 10.1016/j.ensm.2018.05.003. DOI
Zhang Y., Wang L., Zhang N., Zhou Z. Adsorptive environmental applications of MXenenanomaterials: A review. RSC Adv. 2018;8:19895. doi: 10.1039/C8RA03077D. PubMed DOI PMC
Liu J., Liu Y., Xu D., Zhu Y., Peng W., Li Y., Zhang F., Fan X. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl. Catal. B. 2019;241:89–94. doi: 10.1016/j.apcatb.2018.08.083. DOI
Wen Y., Rufford T.E., Chen X., Li N., Lyu M., Dai L., Wang L. Nitrogen-doped Ti3C2TxMXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38:368–376. doi: 10.1016/j.nanoen.2017.06.009. DOI
Wang Y., Li Y., Qiu Z., Wu X., Zhou P., Zhou T., Zhao J., Miao Z., Zhou J., Zhuo S. Fe3O4@Ti3C2MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A. 2018;6:11189–11197. doi: 10.1039/C8TA00122G. DOI
Shen C., Wang L., Zhou A., Zhang H., Chen Z., Hu Q., Qin G. MoS2-Decorated Ti3C2MXeneNanosheet as Anode Material in Lithium-Ion Batteries. J. Electrochem. Soc. 2017;164:2654–2659. doi: 10.1149/2.1421712jes. DOI
Tang H., Hu Q., Zheng M., Chi Y., Qin X., Pang H., Xu Q. MXene–2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018;28:133–147. doi: 10.1016/j.pnsc.2018.03.003. DOI
Ai T., Wang F., Zhang Y., Jiang P., Yuan X. Synthesis and mechanism of ternary carbide Ti3AlC2 by in situ hot pressing process in TiC–Ti–Al system. Adv. Appl. Ceram. 2013;112:424–429. doi: 10.1179/1743676113Y.0000000104. DOI
Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K. Adsorption by Powders and Porous Solids. 2nd ed. Academic Press/Elsevier; Amsterdam, The Netherlands: 2014.
Sen W., Sun H., Yang B., Xu B., Ma W., Liu D., Dai Y. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Met. Hard Mater. 2010;28:628–632. doi: 10.1016/j.ijrmhm.2010.06.005. DOI
Melchior S., Raju A.K., Ike I.S., Erasmus R.M., Kabongo G., Sigalas I., Iyuke S.E., Ozoemena K.I. High-voltage symmetric supercapacitor based on 2D titanium carbide (MXene, Ti2CTx)/carbon nanospherecomposites in neutral aqueous electrolyte. J. Electrochem. Soc. 2018;165:501–511. doi: 10.1149/2.0401803jes. DOI
Wang S., Ma J., Zhu S., Cheng J., Qiao Z., Yang J., Liu W. High temperature tribological properties of Ti3AlC2 ceramic against SiC under different atmospheres. Mater. Des. 2015;67:188–196. doi: 10.1016/j.matdes.2014.11.043. DOI
Hu L., Benitez R., Basu S., Karaman I., Radovic M. Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 2012;60:6266–6277. doi: 10.1016/j.actamat.2012.07.052. DOI
Alhabeb M., Malesky K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TxMXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Syamsai R., Kollu P., Heong S.K., Grace A.N. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram. Int. 2017;43:13119–13126. doi: 10.1016/j.ceramint.2017.07.003. DOI
Sadabadi H., Aftabtalab A., Zafaria S., Shaker S., Ahmadipour M., Venkateswara Rao K. High purity Alpha Alumina nanoparticle: Synthesis and characterization. IJSER. 2013;4:1593–1596.
Prikhna T., Ostash O., Sverdun V., Karpest M., Zimych T., Ivasyshin A., Cabioc’h T., Chartier P., Dub S., Javorska L., et al. Presence of Oxygen in Ti–Al–C MAX Phases-Based Materials and their Stability in Oxidizing Environment at Elevated Temperatures. Acta Phys. Pol. A. 2018;133:789–793. doi: 10.12693/APhysPolA.133.789. DOI
Kruk M., Jaroniec M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem. Mater. 2001;13:3169–3183. doi: 10.1021/cm0101069. DOI
Peng C., Wei P., Chen X., Zhang Y., Zhu F., Cao Y., Wang H., Yu H., Peng F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018;44:18886–18893. doi: 10.1016/j.ceramint.2018.07.124. DOI
Ahmed B., Anjum D.H., Hedhili M.N., Gogotsi Y., Alshareef H.N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale. 2016;8:7580–7587. doi: 10.1039/C6NR00002A. PubMed DOI
Li J., Yuan X., Lin C., Yang Y., Xu L., Du X., Xie J., Lin J., Sun J. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Adv. Energy Mater. 2017;7:160272. doi: 10.1002/aenm.201602725. DOI
Wang H., Zhang J., Wu Y., Huang H., Jiang Q. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J. Phys. Chem. Solids. 2018;115:172–179. doi: 10.1016/j.jpcs.2017.12.039. DOI
Li Z., Zhuang Z., Lv F., Zhu H., Zhou L., Luo M., Zhu J., Lang Z., Feng S., Chen W., et al. The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Adv. Mater. 2018;30:1803220. doi: 10.1002/adma.201803220. PubMed DOI