The Influence of Oxygen Concentration during MAX Phases (Ti₃AlC₂) Preparation on the α-Al₂O₃ Microparticles Content and Specific Surface Area of Multilayered MXenes (Ti₃C₂Tx)

. 2019 Jan 23 ; 12 (3) : . [epub] 20190123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30678115

Grantová podpora
2014/13/D/ST5/02824 Narodowe Centrum Nauki

The high specific surface area of multilayered two-dimensional carbides called MXenes, is a critical feature for their use in energy storage systems, especially supercapacitors. Therefore, the possibility of controlling this parameter is highly desired. This work presents the results of the influence of oxygen concentration during Ti₃AlC₂ ternary carbide-MAX phase preparation on α-Al₂O₃ particles content, and thus the porosity and specific surface area of the Ti₃C₂Tx MXenes. In this research, three different Ti₃AlC₂ samples were prepared, based on TiC-Ti₂AlC powder mixtures, which were conditioned and cold pressed in argon, air and oxygen filled glove-boxes. As-prepared pellets were sintered, ground, sieved and etched using hydrofluoric acid. The MAX phase and MXene samples were analyzed using scanning electron microscopy and X-ray diffraction. The influence of the oxygen concentration on the MXene structures was confirmed by Brunauer-Emmett-Teller surface area determination. It was found that oxygen concentration plays an important role in the formation of α-Al₂O₃ inclusions between MAX phase layers. The mortar grinding of the MAX phase powder and subsequent MXene fabrication process released the α-Al₂O₃ impurities, which led to the formation of the porous MXene structures. However, some non-porous α-Al₂O₃ particles remained inside the MXene structures. Those particles were found ingrown and irremovable, and thus decreased the MXene specific surface area.

Zobrazit více v PubMed

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:1–17. doi: 10.1038/natrevmats.2016.98. DOI

Lukatskaya M.R., Mashtalir O., Ren C.E., Dall’Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013;341:1502–1505. doi: 10.1126/science.1241488. PubMed DOI

Barsoum M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA; Berlin, Germany: 2013.

Hu M., Hu T., Li Z., Yang Y., Cheng R., Yang J., Cui C., Wang X. Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2TxMXene. ACS Nano. 2018;12:3578–3586. doi: 10.1021/acsnano.8b00676. PubMed DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Dall’Agnese Y., Lukatskaya M.R., Cook K.M., Taberna P.-L., Gogotsi Y., Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014;48:118–122. doi: 10.1016/j.elecom.2014.09.002. DOI

Natu V., Clites M., Pomerantseva E., Barsoum M.W. MesoporousMXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 2018;6:230–235. doi: 10.1080/21663831.2018.1434249. DOI

Dong Y., Zheng S., Qin J., Zhao X., Shi H., Wang X., Chen J., Wu Z.-S. All-MXene-Based Integrated Electrode Constructed by Ti3C2Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. ACS Nano. 2018;12:2381–2388. doi: 10.1021/acsnano.7b07672. PubMed DOI

Zhang C.J., Nicolosi V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019;16:102–125. doi: 10.1016/j.ensm.2018.05.003. DOI

Zhang Y., Wang L., Zhang N., Zhou Z. Adsorptive environmental applications of MXenenanomaterials: A review. RSC Adv. 2018;8:19895. doi: 10.1039/C8RA03077D. PubMed DOI PMC

Liu J., Liu Y., Xu D., Zhu Y., Peng W., Li Y., Zhang F., Fan X. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl. Catal. B. 2019;241:89–94. doi: 10.1016/j.apcatb.2018.08.083. DOI

Wen Y., Rufford T.E., Chen X., Li N., Lyu M., Dai L., Wang L. Nitrogen-doped Ti3C2TxMXene electrodes for high-performance supercapacitors. Nano Energy. 2017;38:368–376. doi: 10.1016/j.nanoen.2017.06.009. DOI

Wang Y., Li Y., Qiu Z., Wu X., Zhou P., Zhou T., Zhao J., Miao Z., Zhou J., Zhuo S. Fe3O4@Ti3C2MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A. 2018;6:11189–11197. doi: 10.1039/C8TA00122G. DOI

Shen C., Wang L., Zhou A., Zhang H., Chen Z., Hu Q., Qin G. MoS2-Decorated Ti3C2MXeneNanosheet as Anode Material in Lithium-Ion Batteries. J. Electrochem. Soc. 2017;164:2654–2659. doi: 10.1149/2.1421712jes. DOI

Tang H., Hu Q., Zheng M., Chi Y., Qin X., Pang H., Xu Q. MXene–2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018;28:133–147. doi: 10.1016/j.pnsc.2018.03.003. DOI

Ai T., Wang F., Zhang Y., Jiang P., Yuan X. Synthesis and mechanism of ternary carbide Ti3AlC2 by in situ hot pressing process in TiC–Ti–Al system. Adv. Appl. Ceram. 2013;112:424–429. doi: 10.1179/1743676113Y.0000000104. DOI

Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., Sing K. Adsorption by Powders and Porous Solids. 2nd ed. Academic Press/Elsevier; Amsterdam, The Netherlands: 2014.

Sen W., Sun H., Yang B., Xu B., Ma W., Liu D., Dai Y. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Met. Hard Mater. 2010;28:628–632. doi: 10.1016/j.ijrmhm.2010.06.005. DOI

Melchior S., Raju A.K., Ike I.S., Erasmus R.M., Kabongo G., Sigalas I., Iyuke S.E., Ozoemena K.I. High-voltage symmetric supercapacitor based on 2D titanium carbide (MXene, Ti2CTx)/carbon nanospherecomposites in neutral aqueous electrolyte. J. Electrochem. Soc. 2018;165:501–511. doi: 10.1149/2.0401803jes. DOI

Wang S., Ma J., Zhu S., Cheng J., Qiao Z., Yang J., Liu W. High temperature tribological properties of Ti3AlC2 ceramic against SiC under different atmospheres. Mater. Des. 2015;67:188–196. doi: 10.1016/j.matdes.2014.11.043. DOI

Hu L., Benitez R., Basu S., Karaman I., Radovic M. Processing and characterization of porous Ti2AlC with controlled porosity and pore size. Acta Mater. 2012;60:6266–6277. doi: 10.1016/j.actamat.2012.07.052. DOI

Alhabeb M., Malesky K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TxMXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

Syamsai R., Kollu P., Heong S.K., Grace A.N. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram. Int. 2017;43:13119–13126. doi: 10.1016/j.ceramint.2017.07.003. DOI

Sadabadi H., Aftabtalab A., Zafaria S., Shaker S., Ahmadipour M., Venkateswara Rao K. High purity Alpha Alumina nanoparticle: Synthesis and characterization. IJSER. 2013;4:1593–1596.

Prikhna T., Ostash O., Sverdun V., Karpest M., Zimych T., Ivasyshin A., Cabioc’h T., Chartier P., Dub S., Javorska L., et al. Presence of Oxygen in Ti–Al–C MAX Phases-Based Materials and their Stability in Oxidizing Environment at Elevated Temperatures. Acta Phys. Pol. A. 2018;133:789–793. doi: 10.12693/APhysPolA.133.789. DOI

Kruk M., Jaroniec M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem. Mater. 2001;13:3169–3183. doi: 10.1021/cm0101069. DOI

Peng C., Wei P., Chen X., Zhang Y., Zhu F., Cao Y., Wang H., Yu H., Peng F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018;44:18886–18893. doi: 10.1016/j.ceramint.2018.07.124. DOI

Ahmed B., Anjum D.H., Hedhili M.N., Gogotsi Y., Alshareef H.N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale. 2016;8:7580–7587. doi: 10.1039/C6NR00002A. PubMed DOI

Li J., Yuan X., Lin C., Yang Y., Xu L., Du X., Xie J., Lin J., Sun J. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Adv. Energy Mater. 2017;7:160272. doi: 10.1002/aenm.201602725. DOI

Wang H., Zhang J., Wu Y., Huang H., Jiang Q. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J. Phys. Chem. Solids. 2018;115:172–179. doi: 10.1016/j.jpcs.2017.12.039. DOI

Li Z., Zhuang Z., Lv F., Zhu H., Zhou L., Luo M., Zhu J., Lang Z., Feng S., Chen W., et al. The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Adv. Mater. 2018;30:1803220. doi: 10.1002/adma.201803220. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace