Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30713543
PubMed Central
PMC6346433
DOI
10.3389/fpls.2018.01964
Knihovny.cz E-zdroje
- Klíčová slova
- biotic agents, drought, forest, growth, resilience indicators, ring-width, tree mortality, variance,
- Publikační typ
- časopisecké články MeSH
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
BC3 Basque Centre for Climate Change Leioa Spain
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
CNRS IRD EPHE ISEM Université de Montpellier Montpellier France
Consejo Nacional de Investigaciones Científicas y Técnicas CCT Patagonia Norte Río Negro Argentina
CREAF Cerdanyola del Vallès Catalonia Spain
Departamento de Ciencias Agroforestales EiFAB iuFOR University of Valladolid Soria Spain
Department of Agricultural Science Mediterranean University of Reggio Calabria Reggio Calabria Italy
Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany
Department of Biology University of Minnesota Morris Morris MN United States
Department of Biology University of Victoria Victoria BC Canada
Department of Botany Faculty of Science and Technology University of Debrecen Debrecen Hungary
Department of Botany University of Innsbruck Innsbruck Austria
Department of Ecology Universidad Nacional del Comahue Río Negro Argentina
Department of Entomology University of Arkansas Fayetteville AR United States
Department of Forest Sciences Transilvania University of Brasov Brașov Romania
Department of Forest Sciences University of Helsinki Helsinki Finland
Department of Forestry and Wildland Resources Humboldt State University Arcata CA United States
Department of Geography University of Colorado Boulder CO United States
Department of Physical Chemical and Natural Systems Pablo de Olavide University Seville Spain
Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel
Department of Research Conservation and Collections Desert Botanical Garden Phoenix AZ United States
Department of Yield and Silviculture Slovenian Forestry Institute Ljubljana Slovenia
Dipartimento di Bioscienze Università degli Studi di Milano Milan Italy
Ecologie des Forêts Méditerranéennes Institut National de la Recherche Agronomique Avignon France
Ecology and Biodiversity Vrije Universiteit Brussel Brussels Belgium
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia
Grupo Ecología Forestal CONICET INTA EEA Bariloche Bariloche Argentina
Institute of Forest Botany and Forest Zoology TU Dresden Dresden Germany
Institute of Lowland Forestry and Environment University of Novi Sad Novi Sad Serbia
Institute of Systematic Botany and Ecology Ulm University Ulm Germany
Instituto Pirenaico de Ecología Zaragoza Spain
Laboratory of Wood Biology and Xylarium Royal Museum for Central Africa Tervuren Belgium
National Institute for Research and Development in Forestry Marin Dracea Voluntari Romania
Natural Resources Institute Finland Espoo Finland
Northern Forestry Centre Canadian Forest Service Natural Resources Canada Edmonton AB Canada
Siberian Federal University Krasnoyarsk Russia
Sukachev Institute of Forest Siberian Division of the Russian Academy of Sciences Krasnoyarsk Russia
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
USDA Forest Service Forest Health Protection Saint Paul MN United States
Zobrazit více v PubMed
Adams H. D., Zeppel M. J., Anderegg W. R., Hartmann H., Landhäusser S. M., Tissue D. T., et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. PubMed DOI
Allen C. D., Breshears D. D., McDowell N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. DOI
Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. DOI
Amoroso M. M., Daniels L. D., Larson B. C. (2012). Temporal patterns of radial growth in declining DOI
Anderegg W. R., Berry J. A., Field C. B. (2012). Linking definitions, mechanisms, and modeling of drought-induced tree death. PubMed DOI
Anderegg W. R., Hicke J. A., Fisher R. A., Allen C. D., Aukema J., Bentz B., et al. (2015a). Tree mortality from drought, insects, and their interactions in a changing climate. PubMed DOI
Anderegg W. R., Kane J. M., Anderegg L. D. (2013a). Consequences of widespread tree mortality triggered by drought and temperature stress. DOI
Anderegg W. R., Klein T., Bartlett M., Sack L., Pellegrini A. F., Choat B., et al. (2016a). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PubMed DOI PMC
Anderegg W. R., Martinez-Vilalta J., Cailleret M., Camarero J. J., Ewers B. E., Galbraith D., et al. (2016b). When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. DOI
Anderegg W. R., Plavcová L., Anderegg L. D., Hacke U. G., Berry J. A., Field C. B. (2013b). Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. PubMed DOI
Anderegg W. R., Schwalm C., Biondi F., Camarero J. J., Koch G., Litvak M., et al. (2015b). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. PubMed DOI
Augusto L., Davies T. J., Delzon S., Schrijver A. (2014). The enigma of the rise of angiosperms: Can we untie the knot? PubMed DOI
Bates D., Mächler M., Bolker B., Walker S. (2014). Fitting linear mixed-effects models using lme4.
Bigler C., Bugmann H. (2004). Predicting the time of tree death using dendrochronological data. DOI
Bigler C., Rigling A. (2013). Precision and accuracy of tree-ring-based death dates of mountain pines in the Swiss National Park. DOI
Boden S., Kahle H. P., von Wilpert K., Spiecker H. (2014). Resilience of Norway spruce ( DOI
Bowman D. M., Brienen R. J., Gloor E., Phillips O. L., Prior L. D. (2013). Detecting trends in tree growth: not so simple. PubMed DOI
Brandt L. A., Butler P. R., Handler S. D., Janowiak M. K., Shannon P. D., Swanston C. W. (2017). Integrating science and management to assess forest ecosystem vulnerability to climate change. DOI
Bréda N., Huc R., Granier A., Dreyer E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. DOI
Brienen R. J., Zuidema P. A., During H. J. (2006). Autocorrelated growth of tropical forest trees: unraveling patterns and quantifying consequences. DOI
Brodribb T. J., Bowman D. J., Nichols S., Delzon S., Burlett R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. PubMed DOI
Bunn A. G., Jansma E., Korpela M., Westfall R. D., Baldwin J. (2013). Using simulations and data to evaluate mean sensitivity as a useful statistic in dendrochronology. DOI
Büntgen U., Esper J., Frank D. C., Treydte K., Schmidhalter M., Nicolussi K., et al. (2005). “The effect of power transformation on RCS–evidence from three millennial length alpine chronologies,” in
Büntgen U., Krusic P. J., Verstege A., Sangüesa-Barreda G., Wagner S., Camarero J. J., et al. (2017). New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since medieval times. DOI
Cailleret M., Bigler C., Bugmann H., Camarero J. J., Cufar K., Davi H., et al. (2016). Towards a common methodology for developing logistic tree mortality models based on ring-width data. PubMed DOI
Cailleret M., Jansen S., Robert E. M., DeSoto L., Aakala T., Antos J. A., et al. (2017). A synthesis of radial growth patterns preceding tree mortality. PubMed DOI
Cailleret M., Nourtier M., Amm A., Durand-Gillmann M., Davi H. (2014). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. DOI
Camarero J. J., Gazol A., Sangüesa-Barreda G., Oliva J., Vicente-Serrano S. M. (2015). To die or not to die: early warnings of tree dieback in response to a severe drought. DOI
Carrer M., Urbinati C. (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in PubMed DOI
Carvalhais N., Forkel M., Khomik M., Bellarby J., Jung M., Migliavacca M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. PubMed DOI
Cherubini P., Fontana G., Rigling D., Dobbertin M., Brang P., Innes J. L. (2002). Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. DOI
Choat B., Brodribb T. J., Brodersen C. R., Duursma R. A., López R., Medlyn B. E. (2018). Triggers of tree mortality under drought. PubMed DOI
Cook E. R., Peters K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. DOI
Csank A. Z., Miller A. E., Sherriff R. L., Berg E. E., Welker J. M. (2016). Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. PubMed DOI
Dai L., Vorselen D., Korolev K. S., Gore J. (2012). Generic indicators for loss of resilience before a tipping point leading to population collapse. PubMed DOI
Dakos V., Carpenter S. R., Brock W. A., Ellison A. M., Guttal V., Ives A. R., et al. (2012a). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PubMed DOI PMC
Dakos V., Carpenter S. R., van Nes E. H., Scheffer M. (2015). Resilience indicators: prospects and limitations for early warnings of regime shifts. DOI
Dakos V., Van Nes E. H., D’Odorico P., Scheffer M. (2012b). Robustness of variance and autocorrelation as indicators of critical slowing down. PubMed DOI
D’Arrigo R., Wilson R., Liepert B., Cherubini P. (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. DOI
Das A. J., Stephenson N. L., Davis K. P. (2016). Why do trees die? Characterizing the drivers of background tree mortality. PubMed DOI
Dobbertin M. (2005). Tree growth as an indicator of tree vitality and of tree reaction to environmental stress: a review. DOI
Dobbertin M., Brang P. (2001). Crown defoliation improves tree mortality models. DOI
Drake J. M., Griffen B. D. (2010). Early warning signals of extinction in deteriorating environments. PubMed DOI
Esper J., Schneider L., Smerdon J. E., Schöne B. R., Büntgen U. (2015). Signals and memory in tree-ring width and density data. DOI
Fischer E. M., Beyerle U., Knutti R. (2013). Robust spatially aggregated projections of climate extremes. DOI
Frank D., Esper J., Cook E. R. (2006). “On variance adjustments in tree-ring chronology development,” in
Franklin J. F., Shugart H. H., Harmon M. E. (1987). Tree death as an ecological process. DOI
Fritts H. C. (1976).
Galiano L., Martínez-Vilalta J., Lloret F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. PubMed DOI
Galiano L., Timofeeva G., Saurer M., Siegwolf R., Martínez-Vilalta J., Hommel R., et al. (2017). The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in PubMed DOI
Garcia-Forner N., Sala A., Biel C., Savé R., Martínez-Vilalta J. (2016). Individual traits as determinants of time to death under extreme drought in PubMed DOI
Gea-Izquierdo G., Guibal F., Joffre R., Ourcival J. M., Simioni G., Guiot J. (2015). Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. DOI
Gea-Izquierdo G., Viguera B., Cabrera M., Cañellas I. (2014). Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. DOI
Gessler A., Cailleret M., Joseph J., Schönbeck L., Schaub M., Lehmann M., et al. (2018). Drought induced tree mortality–a tree-ring isotope based conceptual model to assess mechanisms and predispositions. PubMed DOI
Gillner S., Rüger N., Roloff A., Berger U. (2013). Low relative growth rates predict future mortality of common beech ( DOI
Girard F., Vennetier M., Guibal F., Corona C., Ouarmim S., Herrero A. (2012). DOI
Guada G., Camarero J. J., Sánchez-Salguero R., Cerrillo R. M. N. (2016). Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species. PubMed DOI PMC
Guillemot J., Francois C., Hmimina G., Dufrêne E., Martin-StPaul N. K., Soudani K., et al. (2017). Environmental control of carbon allocation matters for modelling forest growth. PubMed DOI
Hagedorn F., Joseph J., Peter M., Luster J., Pritsch K., Geppert U., et al. (2016). Recovery of trees from drought depends on belowground sink control. PubMed DOI
Hartl-Meier C., Zang C., Büntgen U., Esper J., Rothe A., Göttlein A., et al. (2015). Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. PubMed DOI
Hartmann H., Moura C. F., Anderegg W. R., Ruehr N. K., Salmon Y., Allen C. D., et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. PubMed DOI
Hereş A. M., Camarero J. J., López B. C., Martínez-Vilalta J. (2014). Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. DOI
Heres A. M., Martínez-Vilalta J., López B. C. (2012). Growth patterns in relation to drought-induced mortality at two Scots pine ( DOI
Herguido E., Granda E., Benavides R., García-Cervigón A. I., Camarero J. J., Valladares F. (2016). Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. DOI
Hülsmann L., Bugmann H., Cailleret M., Brang P. (2018). How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. PubMed DOI
Johnson D. M., McCulloh K. A., Woodruff D. R., Meinzer F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? PubMed DOI
Jump A. S., Ruiz-Benito P., Greenwood S., Allen C. D., Kitzberger T., Fensham R., et al. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. PubMed DOI
Kane J. M., Kolb T. E. (2014). Short-and long-term growth characteristics associated with tree mortality in southwestern mixed-conifer forests. DOI
Körner C. (2015). Paradigm shift in plant growth control. PubMed DOI
Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). LmerTest package: tests in linear mixed effects models. DOI
Lenton T. M., Dakos V., Bathiany S., Scheffer M. (2017). Observed trends in the magnitude and persistence of monthly temperature variability. PubMed DOI PMC
Lin Y. S., Medlyn B. E., Duursma R. A., Prentice I. C., Wang H., Baig S., et al. (2015). Optimal stomatal behavior around the world. DOI
Lloret F., Escudero A., Iriondo J. M., Martínez-Vilalta J., Valladares F. (2012). Extreme climatic events and vegetation: the role of stabilizing processes. DOI
Lloret F., Keeling E. G., Sala A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. DOI
Macalady A. K., Bugmann H. (2014). Growth-mortality relationships in piñon pine ( PubMed DOI PMC
Manion P. D. (1991).
Martín-Benito D., Cherubini P., Del Río M., Cañellas I. (2008). Growth response to climate and drought in DOI
Martínez-Vilalta J., Lloret F. (2016). Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. DOI
Martínez-Vilalta J., Sala A., Asensio D., Galiano L., Hoch G., Palacio S., et al. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. DOI
McDowell N., Allen C. D., Marshall L. (2010). Growth, carbon-isotope discrimination, and drought-associated mortality across a DOI
Mencuccini M., Munné-Bosch S. (2017). “Physiological and biochemical processes related to ageing and senescence in plants,” in
Mérian P., Lebourgeois F. (2011). Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. DOI
Millar C. I., Westfall R. D., Delany D. L. (2007). Response of high-elevation limber pine ( DOI
Millar C. I., Westfall R. D., Delany D. L., Bokach M. J., Flint A. L., Flint L. E. (2012). Forest mortality in high-elevation whitebark pine ( DOI
Mueller R. C., Scudder C. M., Porter M. E., Talbot Trotter R., Gehring C. A., Whitham T. G. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. DOI
Nesmith J. C., Das A. J., O’Hara K. L., van Mantgem P. J. (2015). The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. DOI
Ogle K., Whitham T. G., Cobb N. S. (2000). Tree-ring variation in pinyon predicts likelihood of death following severe drought. DOI
Olde Rikkert M. G., Dakos V., Buchman T. G., de Boer R., Glass L., Cramer A. O., et al. (2016). Slowing down of recovery as generic risk marker for acute severity transitions in chronic diseases. PubMed DOI
Pace M. L., Carpenter S. R., Cole J. J. (2015). With and without warning: managing ecosystems in a changing world. DOI
Palacio S., Hernández R., Maestro-Martínez M., Camarero J. J. (2012). Fast replenishment of initial carbon stores after defoliation by the pine processionary moth and its relationship to the re-growth ability of trees. DOI
Pangle R. E., Limousin J. M., Plaut J. A., Yepez E. A., Hudson P. J., Boutz A. L., et al. (2015). Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland. PubMed DOI PMC
Pedersen B. S. (1998). The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. DOI
Pellizzari E., Camarero J. J., Gazol A., Sangüesa-Barreda G., Carrer M. (2016). Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. PubMed DOI
Peters R. L., Groenendijk P., Vlam M., Zuidema P. A. (2015). Detecting long-term growth trends using tree rings: a critical evaluation of methods. PubMed DOI
Plavcová L., Hoch G., Morris H., Ghiasi S., Jansen S. (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. PubMed DOI
R Core Team (2017).
Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J. A., Turner M. G., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. DOI
Reyer C. P., Leuzinger S., Rammig A., Wolf A., Bartholomeus R. P., Bonfante A., et al. (2013). A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. PubMed DOI PMC
Rogers B. M., Solvik K., Hogg E. H., Ju J., Masek J. G., Michaelian M., et al. (2018). Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. PubMed DOI
Royer P. D., Cobb N. S., Clifford M. J., Huang C. Y., Breshears D. D., Adams H. D., et al. (2011). Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. DOI
Sánchez-Salguero R., Navarro R. M., Camarero J. J., Fernández-Cancio Á. (2010). Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. DOI
Sangüesa-Barreda G., Linares J. C., Camarero J. J. (2015). Reduced growth sensitivity to climate in bark-beetle infested Aleppo pines: connecting climatic and biotic drivers of forest dieback. DOI
Scheffer M., Bascompte J., Brock W. A., Brovkin V., Carpenter S. R., Dakos V., et al. (2009). Early warning signals for critical transitions. PubMed DOI
Schiestl-Aalto P., Kulmala L., Mäkinen H., Nikinmaa E., Mäkelä A. (2015). CASSIA–a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. PubMed DOI
Schulman E. (1956).
Steppe K., Niinemets Ü, Teskey R. O. (2011). “Tree size- and age-related changes in leaf physiology and their influence on carbon gain,” in DOI
Suarez M. L., Ghermandi L., Kitzberger T. (2004). Factors predisposing episodic drought-induced tree mortality in Nothofagus–site, climatic sensitivity and growth trends. DOI
Timofeeva G., Treydte K., Bugmann H., Rigling A., Schaub M., Siegwolf R., et al. (2017). Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. PubMed DOI
Trumbore S., Brando P., Hartmann H. (2015). Forest health and global change. PubMed DOI
Veraart A. J., Faassen E. J., Dakos V., van Nes E. H., Lürling M., Scheffer M. (2012). Recovery rates reflect distance to a tipping point in a living system. PubMed DOI
Verbesselt J., Umlauf N., Hirota M., Holmgren M., Van Nes E. H., Herold M., et al. (2016). Remotely sensed resilience of tropical forests. DOI
von Arx G., Arzac A., Fonti P., Frank D., Zweifel R., Rigling A., et al. (2017). Responses of sapwood ray parenchyma and non-structural carbohydrates of DOI
Wissel C. (1984). A universal law of the characteristic return time near thresholds. PubMed DOI
Yin J., Bauerle T. L. (2017). A global analysis of plant recovery performance from water stress. DOI
Zeppel M. J., Harrison S. P., Adams H. D., Kelley D. I., Li G., Tissue D. T., et al. (2015). Drought and resprouting plants. PubMed DOI