Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30713543
PubMed Central
PMC6346433
DOI
10.3389/fpls.2018.01964
Knihovny.cz E-zdroje
- Klíčová slova
- biotic agents, drought, forest, growth, resilience indicators, ring-width, tree mortality, variance,
- Publikační typ
- časopisecké články MeSH
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
BC3 Basque Centre for Climate Change Leioa Spain
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
CNRS IRD EPHE ISEM Université de Montpellier Montpellier France
Consejo Nacional de Investigaciones Científicas y Técnicas CCT Patagonia Norte Río Negro Argentina
CREAF Cerdanyola del Vallès Catalonia Spain
Departamento de Ciencias Agroforestales EiFAB iuFOR University of Valladolid Soria Spain
Department of Agricultural Science Mediterranean University of Reggio Calabria Reggio Calabria Italy
Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany
Department of Biology University of Minnesota Morris Morris MN United States
Department of Biology University of Victoria Victoria BC Canada
Department of Botany Faculty of Science and Technology University of Debrecen Debrecen Hungary
Department of Botany University of Innsbruck Innsbruck Austria
Department of Ecology Universidad Nacional del Comahue Río Negro Argentina
Department of Entomology University of Arkansas Fayetteville AR United States
Department of Forest Sciences Transilvania University of Brasov Brașov Romania
Department of Forest Sciences University of Helsinki Helsinki Finland
Department of Forestry and Wildland Resources Humboldt State University Arcata CA United States
Department of Geography University of Colorado Boulder CO United States
Department of Physical Chemical and Natural Systems Pablo de Olavide University Seville Spain
Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel
Department of Research Conservation and Collections Desert Botanical Garden Phoenix AZ United States
Department of Yield and Silviculture Slovenian Forestry Institute Ljubljana Slovenia
Dipartimento di Bioscienze Università degli Studi di Milano Milan Italy
Ecologie des Forêts Méditerranéennes Institut National de la Recherche Agronomique Avignon France
Ecology and Biodiversity Vrije Universiteit Brussel Brussels Belgium
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia
Grupo Ecología Forestal CONICET INTA EEA Bariloche Bariloche Argentina
Institute of Forest Botany and Forest Zoology TU Dresden Dresden Germany
Institute of Lowland Forestry and Environment University of Novi Sad Novi Sad Serbia
Institute of Systematic Botany and Ecology Ulm University Ulm Germany
Instituto Pirenaico de Ecología Zaragoza Spain
Laboratory of Wood Biology and Xylarium Royal Museum for Central Africa Tervuren Belgium
National Institute for Research and Development in Forestry Marin Dracea Voluntari Romania
Natural Resources Institute Finland Espoo Finland
Northern Forestry Centre Canadian Forest Service Natural Resources Canada Edmonton AB Canada
Siberian Federal University Krasnoyarsk Russia
Sukachev Institute of Forest Siberian Division of the Russian Academy of Sciences Krasnoyarsk Russia
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
USDA Forest Service Forest Health Protection Saint Paul MN United States
Zobrazit více v PubMed
Adams H. D., Zeppel M. J., Anderegg W. R., Hartmann H., Landhäusser S. M., Tissue D. T., et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1 1285–1291. 10.1038/s41559-017-0248-x PubMed DOI
Allen C. D., Breshears D. D., McDowell N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6 1–55. 10.1890/ES15-00203.1 DOI
Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259 660–684. 10.1016/j.foreco.2009.09.001 DOI
Amoroso M. M., Daniels L. D., Larson B. C. (2012). Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of tree-rings as an indicator of forest decline. For. Ecol. Manage. 265 62–70. 10.1016/j.foreco.2011.10.021 DOI
Anderegg W. R., Berry J. A., Field C. B. (2012). Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17 693–700. 10.1016/j.tplants.2012.09.006 PubMed DOI
Anderegg W. R., Hicke J. A., Fisher R. A., Allen C. D., Aukema J., Bentz B., et al. (2015a). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208 674–683. 10.1111/nph.13477 PubMed DOI
Anderegg W. R., Kane J. M., Anderegg L. D. (2013a). Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3 30–36. 10.1038/nclimate1635 DOI
Anderegg W. R., Klein T., Bartlett M., Sack L., Pellegrini A. F., Choat B., et al. (2016a). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U.S.A. 113 5024–5029. 10.1073/pnas.1525678113 PubMed DOI PMC
Anderegg W. R., Martinez-Vilalta J., Cailleret M., Camarero J. J., Ewers B. E., Galbraith D., et al. (2016b). When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. Ecosystems 19 1133–1147. 10.1007/s10021-016-9982-1 DOI
Anderegg W. R., Plavcová L., Anderegg L. D., Hacke U. G., Berry J. A., Field C. B. (2013b). Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob. Change Biol. 19 1188–1196. 10.1111/gcb.12100 PubMed DOI
Anderegg W. R., Schwalm C., Biondi F., Camarero J. J., Koch G., Litvak M., et al. (2015b). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349 528–532. 10.1126/science.aab1833 PubMed DOI
Augusto L., Davies T. J., Delzon S., Schrijver A. (2014). The enigma of the rise of angiosperms: Can we untie the knot? Ecol. Lett. 17 1326–1338. 10.1111/ele.12323 PubMed DOI
Bates D., Mächler M., Bolker B., Walker S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv: 1406.5823. Available at: https://arxiv.org/abs/1406.5823.
Bigler C., Bugmann H. (2004). Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14 902–914. 10.1890/03-5011 DOI
Bigler C., Rigling A. (2013). Precision and accuracy of tree-ring-based death dates of mountain pines in the Swiss National Park. Trees 27 1703–1712. 10.1007/s00468-013-0917-6 DOI
Boden S., Kahle H. P., von Wilpert K., Spiecker H. (2014). Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. For. Ecol. Manage. 315 12–21. 10.1016/j.foreco.2013.12.015 DOI
Bowman D. M., Brienen R. J., Gloor E., Phillips O. L., Prior L. D. (2013). Detecting trends in tree growth: not so simple. Trends Plant Sci. 18 11–17. 10.1016/j.tplants.2012.08.005 PubMed DOI
Brandt L. A., Butler P. R., Handler S. D., Janowiak M. K., Shannon P. D., Swanston C. W. (2017). Integrating science and management to assess forest ecosystem vulnerability to climate change. J. For. 115 212–221. 10.5849/jof.15-147 DOI
Bréda N., Huc R., Granier A., Dreyer E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63 625–644. 10.1051/forest:2006042 DOI
Brienen R. J., Zuidema P. A., During H. J. (2006). Autocorrelated growth of tropical forest trees: unraveling patterns and quantifying consequences. For. Ecol. Manage. 237 179–190. 10.1016/j.foreco.2006.09.042 DOI
Brodribb T. J., Bowman D. J., Nichols S., Delzon S., Burlett R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188 533–542. 10.1111/j.1469-8137.2010.03393.x PubMed DOI
Bunn A. G., Jansma E., Korpela M., Westfall R. D., Baldwin J. (2013). Using simulations and data to evaluate mean sensitivity as a useful statistic in dendrochronology. Dendrochronologia 31 250–254. 10.1016/j.dendro.2013.01.004 DOI
Büntgen U., Esper J., Frank D. C., Treydte K., Schmidhalter M., Nicolussi K., et al. (2005). “The effect of power transformation on RCS–evidence from three millennial length alpine chronologies,” in Proceedings of the International conference Tree rings in archaeology, climatology and ecology, TRACE, Birmensdorf, 141–149.
Büntgen U., Krusic P. J., Verstege A., Sangüesa-Barreda G., Wagner S., Camarero J. J., et al. (2017). New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since medieval times. J. Climate 30 5295–5318. 10.1175/JCLI-D-16-0526.1 DOI
Cailleret M., Bigler C., Bugmann H., Camarero J. J., Cufar K., Davi H., et al. (2016). Towards a common methodology for developing logistic tree mortality models based on ring-width data. Ecol. Appl. 26 1827–1841. 10.1890/15-1402.1 PubMed DOI
Cailleret M., Jansen S., Robert E. M., DeSoto L., Aakala T., Antos J. A., et al. (2017). A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23 1675–1690. 10.1111/gcb.13535 PubMed DOI
Cailleret M., Nourtier M., Amm A., Durand-Gillmann M., Davi H. (2014). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann. For. Sci. 71 643–657. 10.1007/s13595-013-0265-0 DOI
Camarero J. J., Gazol A., Sangüesa-Barreda G., Oliva J., Vicente-Serrano S. M. (2015). To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103 44–57. 10.1111/1365-2745.12295 DOI
Carrer M., Urbinati C. (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol. 170 861–872. 10.1111/j.1469-8137.2006.01703.x PubMed DOI
Carvalhais N., Forkel M., Khomik M., Bellarby J., Jung M., Migliavacca M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514 213–217. 10.1038/nature13731 PubMed DOI
Cherubini P., Fontana G., Rigling D., Dobbertin M., Brang P., Innes J. L. (2002). Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J. Ecol. 90 839–850. 10.1046/j.1365-2745.2002.00715.x DOI
Choat B., Brodribb T. J., Brodersen C. R., Duursma R. A., López R., Medlyn B. E. (2018). Triggers of tree mortality under drought. Nature 558 531–539. 10.1038/s41586-018-0240-x PubMed DOI
Cook E. R., Peters K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7 361–370. 10.1177/095968369700700314 DOI
Csank A. Z., Miller A. E., Sherriff R. L., Berg E. E., Welker J. M. (2016). Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. Ecol. Appl. 26 2001–2020. 10.1002/eap.1365 PubMed DOI
Dai L., Vorselen D., Korolev K. S., Gore J. (2012). Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336 1175–1177. 10.1126/science.1219805 PubMed DOI
Dakos V., Carpenter S. R., Brock W. A., Ellison A. M., Guttal V., Ives A. R., et al. (2012a). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7:e41010. 10.1371/journal.pone.0041010 PubMed DOI PMC
Dakos V., Carpenter S. R., van Nes E. H., Scheffer M. (2015). Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B 370:20130263 10.1098/rstb.2013.0263 DOI
Dakos V., Van Nes E. H., D’Odorico P., Scheffer M. (2012b). Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93 264–271. 10.1890/11-0889.1 PubMed DOI
D’Arrigo R., Wilson R., Liepert B., Cherubini P. (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60 289–305. 10.1016/j.gloplacha.2007.03.004 DOI
Das A. J., Stephenson N. L., Davis K. P. (2016). Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97 2616–2627. 10.1002/ecy.1497 PubMed DOI
Dobbertin M. (2005). Tree growth as an indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124 319–333. 10.1007/s10342-005-0085-3 DOI
Dobbertin M., Brang P. (2001). Crown defoliation improves tree mortality models. For. Ecol. Manage. 141 271–284. 10.1016/S0378-1127(00)00335-2 DOI
Drake J. M., Griffen B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature 467 456–459. 10.1038/nature09389 PubMed DOI
Esper J., Schneider L., Smerdon J. E., Schöne B. R., Büntgen U. (2015). Signals and memory in tree-ring width and density data. Dendrochronologia 35 62–70. 10.1016/j.dendro.2015.07.001 DOI
Fischer E. M., Beyerle U., Knutti R. (2013). Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 3 1033–1038. 10.1038/nclimate2051 DOI
Frank D., Esper J., Cook E. R. (2006). “On variance adjustments in tree-ring chronology development,” in Tree Rings in Archaeology, Climatology and Ecology, TRACE Vol. 4 eds Heinrich I., Gärtner H., Monbaron M., Schleser G., 56–66.
Franklin J. F., Shugart H. H., Harmon M. E. (1987). Tree death as an ecological process. BioScience 37 550–556. 10.2307/1310665 DOI
Fritts H. C. (1976). Tree Rings and Climate. London: Academic Press.
Galiano L., Martínez-Vilalta J., Lloret F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol. 190 750–759. 10.1111/j.1469-8137.2010.03628.x PubMed DOI
Galiano L., Timofeeva G., Saurer M., Siegwolf R., Martínez-Vilalta J., Hommel R., et al. (2017). The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. Plant Cell Environ. 40 1711–1724. 10.1111/pce.12972 PubMed DOI
Garcia-Forner N., Sala A., Biel C., Savé R., Martínez-Vilalta J. (2016). Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L. Tree Physiol. 36 1196–1209. 10.1093/treephys/tpw040 PubMed DOI
Gea-Izquierdo G., Guibal F., Joffre R., Ourcival J. M., Simioni G., Guiot J. (2015). Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. Biogeosciences 12 3695–3712. 10.5194/bg-12-3695-2015 DOI
Gea-Izquierdo G., Viguera B., Cabrera M., Cañellas I. (2014). Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. For. Ecol. Manage. 320 70–82. 10.1016/j.foreco.2014.02.025 DOI
Gessler A., Cailleret M., Joseph J., Schönbeck L., Schaub M., Lehmann M., et al. (2018). Drought induced tree mortality–a tree-ring isotope based conceptual model to assess mechanisms and predispositions. New Phytol. 219 485–490. 10.1111/nph.15154 PubMed DOI
Gillner S., Rüger N., Roloff A., Berger U. (2013). Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.). For. Ecol. Manage. 302 372–378. 10.1016/j.foreco.2013.03.032 DOI
Girard F., Vennetier M., Guibal F., Corona C., Ouarmim S., Herrero A. (2012). Pinus halepensis Mill. crown development and fruiting declined with repeated drought in Mediterranean France. Eur. J. For. Res. 131 919–931. 10.1007/s10342-011-0565-6 DOI
Guada G., Camarero J. J., Sánchez-Salguero R., Cerrillo R. M. N. (2016). Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species. Front. Plant Sci. 7:418. 10.3389/fpls.2016.00418 PubMed DOI PMC
Guillemot J., Francois C., Hmimina G., Dufrêne E., Martin-StPaul N. K., Soudani K., et al. (2017). Environmental control of carbon allocation matters for modelling forest growth. New Phytol. 214 180–193. 10.3389/fpls.2016.00418 PubMed DOI
Hagedorn F., Joseph J., Peter M., Luster J., Pritsch K., Geppert U., et al. (2016). Recovery of trees from drought depends on belowground sink control. Nat. Plants 2:16111. 10.1038/nplants.2016.111 PubMed DOI
Hartl-Meier C., Zang C., Büntgen U., Esper J., Rothe A., Göttlein A., et al. (2015). Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol. 35 4–15. 10.1093/treephys/tpu096 PubMed DOI
Hartmann H., Moura C. F., Anderegg W. R., Ruehr N. K., Salmon Y., Allen C. D., et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218 15–28. 10.1111/nph.15048 PubMed DOI
Hereş A. M., Camarero J. J., López B. C., Martínez-Vilalta J. (2014). Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. Trees 28 1737–1750. 10.1007/s00468-014-1081-3 DOI
Heres A. M., Martínez-Vilalta J., López B. C. (2012). Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestris L.) sites in NE Iberian Peninsula. Trees 26 621–630. 10.1007/s00468-011-0628-9 DOI
Herguido E., Granda E., Benavides R., García-Cervigón A. I., Camarero J. J., Valladares F. (2016). Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. For. Ecol. Manage. 363 149–158. 10.1016/j.foreco.2015.12.038 DOI
Hülsmann L., Bugmann H., Cailleret M., Brang P. (2018). How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28 522–540. 10.1002/eap.1668 PubMed DOI
Johnson D. M., McCulloh K. A., Woodruff D. R., Meinzer F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195 48–53. 10.1016/j.plantsci.2012.06.010 PubMed DOI
Jump A. S., Ruiz-Benito P., Greenwood S., Allen C. D., Kitzberger T., Fensham R., et al. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23 3742–3757. 10.1111/gcb.13636 PubMed DOI
Kane J. M., Kolb T. E. (2014). Short-and long-term growth characteristics associated with tree mortality in southwestern mixed-conifer forests. Can. J. For. Res. 44 1227–1235. 10.1139/cjfr-2014-0186 DOI
Körner C. (2015). Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25 107–114. 10.1016/j.pbi.2015.05.003 PubMed DOI
Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). LmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82 1–26. 10.18637/jss.v082.i13 DOI
Lenton T. M., Dakos V., Bathiany S., Scheffer M. (2017). Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 7:5940. 10.1038/s41598-017-06382-x PubMed DOI PMC
Lin Y. S., Medlyn B. E., Duursma R. A., Prentice I. C., Wang H., Baig S., et al. (2015). Optimal stomatal behavior around the world. Nat. Clim. Change 5 459–464. 10.1038/nclimate2550 DOI
Lloret F., Escudero A., Iriondo J. M., Martínez-Vilalta J., Valladares F. (2012). Extreme climatic events and vegetation: the role of stabilizing processes. Glob. Change Biol. 18 797–805. 10.1111/j.1365-2486.2011.02624.x DOI
Lloret F., Keeling E. G., Sala A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120 1909–1920. 10.1111/j.1600-0706.2011.19372.x DOI
Macalady A. K., Bugmann H. (2014). Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time. PLoS One 9:e92770. 10.1371/journal.pone.0092770 PubMed DOI PMC
Manion P. D. (1991). Tree Disease Concepts. Englewood Cliffs, NJ: Prentice-Hall.
Martín-Benito D., Cherubini P., Del Río M., Cañellas I. (2008). Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22 363–373. 10.1007/s00468-007-0191-6 DOI
Martínez-Vilalta J., Lloret F. (2016). Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob. Planet. Change 144 94–108. 10.1016/j.gloplacha.2016.07.009 DOI
Martínez-Vilalta J., Sala A., Asensio D., Galiano L., Hoch G., Palacio S., et al. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr. 86 495–516. 10.1002/ecm.1231 DOI
McDowell N., Allen C. D., Marshall L. (2010). Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16 399–415. 10.1111/j.1365-2486.2009.01994.x DOI
Mencuccini M., Munné-Bosch S. (2017). “Physiological and biochemical processes related to ageing and senescence in plants,” in The Evolution of Senescence in the Tree of Life, eds Shefferson R. P., Jones O. R., Salguero-Gómez R. (Cambridge: Cambridge University Press; ), 257–283.
Mérian P., Lebourgeois F. (2011). Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. For. Ecol. Manage. 261 1382–1391. 10.1016/j.foreco.2011.01.019 DOI
Millar C. I., Westfall R. D., Delany D. L. (2007). Response of high-elevation limber pine (Pinus flexilis) to multiyear droughts and 20th-century warming, Sierra Nevada, California, USA. Can. J. For. Res. 37 2508–2520. 10.1139/X07-097 DOI
Millar C. I., Westfall R. D., Delany D. L., Bokach M. J., Flint A. L., Flint L. E. (2012). Forest mortality in high-elevation whitebark pine (Pinus albicaulis) forests of eastern California, USA; influence of environmental context, bark beetles, climatic water deficit, and warming. Can. J. For. Res. 42 749–765. 10.1139/x2012-031 DOI
Mueller R. C., Scudder C. M., Porter M. E., Talbot Trotter R., Gehring C. A., Whitham T. G. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J. Ecol. 93 1085–1093. 10.1111/j.1365-2745.2005.01042.x DOI
Nesmith J. C., Das A. J., O’Hara K. L., van Mantgem P. J. (2015). The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. Can. J. For. Res. 45 910–919. 10.1139/cjfr-2014-0449 DOI
Ogle K., Whitham T. G., Cobb N. S. (2000). Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81 3237–3243. 10.1890/0012-9658(2000)081[3237:TRVIPP]2.0.CO;2 DOI
Olde Rikkert M. G., Dakos V., Buchman T. G., de Boer R., Glass L., Cramer A. O., et al. (2016). Slowing down of recovery as generic risk marker for acute severity transitions in chronic diseases. Crit. Care Med. 44 601–606. 10.1097/CCM.0000000000001564 PubMed DOI
Pace M. L., Carpenter S. R., Cole J. J. (2015). With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13 460–467. 10.1890/150003 DOI
Palacio S., Hernández R., Maestro-Martínez M., Camarero J. J. (2012). Fast replenishment of initial carbon stores after defoliation by the pine processionary moth and its relationship to the re-growth ability of trees. Trees 26 1627–1640. 10.1007/s00468-012-0739-y DOI
Pangle R. E., Limousin J. M., Plaut J. A., Yepez E. A., Hudson P. J., Boutz A. L., et al. (2015). Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland. Ecol. Evol. 5 1618–1638. 10.1002/ece3.1422 PubMed DOI PMC
Pedersen B. S. (1998). The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79 79–93. 10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2 DOI
Pellizzari E., Camarero J. J., Gazol A., Sangüesa-Barreda G., Carrer M. (2016). Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Change Biol. 22 2125–2137. 10.1111/gcb.13227 PubMed DOI
Peters R. L., Groenendijk P., Vlam M., Zuidema P. A. (2015). Detecting long-term growth trends using tree rings: a critical evaluation of methods. Glob. Change Biol. 21 2040–2054. 10.1111/gcb.12826 PubMed DOI
Plavcová L., Hoch G., Morris H., Ghiasi S., Jansen S. (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am. J. Bot. 103 603–612. 10.3732/ajb.1500489 PubMed DOI
R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J. A., Turner M. G., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58 501–517. 10.1641/B580607 DOI
Reyer C. P., Leuzinger S., Rammig A., Wolf A., Bartholomeus R. P., Bonfante A., et al. (2013). A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19 75–89. 10.1111/gcb.12023 PubMed DOI PMC
Rogers B. M., Solvik K., Hogg E. H., Ju J., Masek J. G., Michaelian M., et al. (2018). Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Change Biol. 24 2284–2304. 10.1111/gcb.14107 PubMed DOI
Royer P. D., Cobb N. S., Clifford M. J., Huang C. Y., Breshears D. D., Adams H. D., et al. (2011). Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. J. Ecol. 99 714–723. 10.1111/j.1365-2745.2011.01804.x DOI
Sánchez-Salguero R., Navarro R. M., Camarero J. J., Fernández-Cancio Á. (2010). Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. For. Syst. 19 458–470. 10.5424/fs/2010193-9131 DOI
Sangüesa-Barreda G., Linares J. C., Camarero J. J. (2015). Reduced growth sensitivity to climate in bark-beetle infested Aleppo pines: connecting climatic and biotic drivers of forest dieback. For. Ecol. Manage. 357 126–137. 10.1016/j.foreco.2015.08.017 DOI
Scheffer M., Bascompte J., Brock W. A., Brovkin V., Carpenter S. R., Dakos V., et al. (2009). Early warning signals for critical transitions. Nature 461 53–59. 10.1038/nature08227 PubMed DOI
Schiestl-Aalto P., Kulmala L., Mäkinen H., Nikinmaa E., Mäkelä A. (2015). CASSIA–a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytol. 206 647–659. 10.1111/nph.13275 PubMed DOI
Schulman E. (1956). Dendroclimatic Changes in Semiarid America. Tucson: University of Arizona Press.
Steppe K., Niinemets Ü, Teskey R. O. (2011). “Tree size- and age-related changes in leaf physiology and their influence on carbon gain,” in Size- and Age-Related Changes in Tree Structure and Function, eds Meinzer F. C., Lachenbruch B., Dawson T. E. (Dodrecht: Springer; ), 235–254. 10.1007/978-94-007-1242-3 DOI
Suarez M. L., Ghermandi L., Kitzberger T. (2004). Factors predisposing episodic drought-induced tree mortality in Nothofagus–site, climatic sensitivity and growth trends. J. Ecol. 92 954–966. 10.1111/j.1365-2745.2004.00941.x DOI
Timofeeva G., Treydte K., Bugmann H., Rigling A., Schaub M., Siegwolf R., et al. (2017). Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 37 1028–1041. 10.1093/treephys/tpx041 PubMed DOI
Trumbore S., Brando P., Hartmann H. (2015). Forest health and global change. Science 349 814–818. 10.1126/science.aac6759 PubMed DOI
Veraart A. J., Faassen E. J., Dakos V., van Nes E. H., Lürling M., Scheffer M. (2012). Recovery rates reflect distance to a tipping point in a living system. Nature 481 357–359. 10.1038/nature10723 PubMed DOI
Verbesselt J., Umlauf N., Hirota M., Holmgren M., Van Nes E. H., Herold M., et al. (2016). Remotely sensed resilience of tropical forests. Nat. Clim. Change 6 1028–1031. 10.1038/nclimate3108 DOI
von Arx G., Arzac A., Fonti P., Frank D., Zweifel R., Rigling A., et al. (2017). Responses of sapwood ray parenchyma and non-structural carbohydrates of Pinus sylvestris to drought and long-term irrigation. Funct. Ecol. 31 1371–1382. 10.1111/1365-2435.12860 DOI
Wissel C. (1984). A universal law of the characteristic return time near thresholds. Oecologia 65 101–107. 10.1007/BF00384470 PubMed DOI
Yin J., Bauerle T. L. (2017). A global analysis of plant recovery performance from water stress. Oikos 126 1377–1388. 10.1111/oik.04534 DOI
Zeppel M. J., Harrison S. P., Adams H. D., Kelley D. I., Li G., Tissue D. T., et al. (2015). Drought and resprouting plants. New Phytol. 206 583–589. 10.1111/nph.13205 PubMed DOI