Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth

. 2018 ; 9 () : 1964. [epub] 20190108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30713543

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

BC3 Basque Centre for Climate Change Leioa Spain

Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

Boreal Avian Modelling Project Department of Renewable Resources University of Alberta Edmonton AB Canada

Centre for Forest Research Département des Sciences du Bois et de la Forêt Faculté de Foresterie de Géographie et de Géomatique Université Laval Québec QC Canada

Centro de Investigación Forestal Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid Spain

CNRS IRD EPHE ISEM Université de Montpellier Montpellier France

Consejo Nacional de Investigaciones Científicas y Técnicas CCT Patagonia Norte Río Negro Argentina

CREAF Cerdanyola del Vallès Catalonia Spain

Departament de Biologia Animal de Biologia Vegetal i d'Ecologia Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain

Departamento de Ciencias Agroforestales EiFAB iuFOR University of Valladolid Soria Spain

Department of Agricultural Science Mediterranean University of Reggio Calabria Reggio Calabria Italy

Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany

Department of Biology University of Minnesota Morris Morris MN United States

Department of Biology University of Victoria Victoria BC Canada

Department of Botany Faculty of Science and Technology University of Debrecen Debrecen Hungary

Department of Botany University of Innsbruck Innsbruck Austria

Department of Ecology Universidad Nacional del Comahue Río Negro Argentina

Department of Entomology University of Arkansas Fayetteville AR United States

Department of Environmental Systems Science Forest Ecology Institute of Terrestrial Ecosystems ETH Zürich Zurich Switzerland

Department of Environmental Systems Science Institute of Agricultural Sciences ETH Zürich Zurich Switzerland

Department of Forest Sciences Transilvania University of Brasov Brașov Romania

Department of Forest Sciences University of Helsinki Helsinki Finland

Department of Forestry and Natural Environment Management Technological Educational Institute of Stereas Elladas Karpenisi Greece

Department of Forestry and Wildland Resources Humboldt State University Arcata CA United States

Department of Geography Planning and Recreation Northern Arizona University Flagstaff AZ United States

Department of Geography University of Colorado Boulder CO United States

Department of Physical Chemical and Natural Systems Pablo de Olavide University Seville Spain

Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot Israel

Department of Research Conservation and Collections Desert Botanical Garden Phoenix AZ United States

Department of Yield and Silviculture Slovenian Forestry Institute Ljubljana Slovenia

Dipartimento di Bioscienze Università degli Studi di Milano Milan Italy

Ecologie des Forêts Méditerranéennes Institut National de la Recherche Agronomique Avignon France

Ecology and Biodiversity Vrije Universiteit Brussel Brussels Belgium

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia

Grupo Ecología Forestal CONICET INTA EEA Bariloche Bariloche Argentina

Institute of Forest Botany and Forest Zoology TU Dresden Dresden Germany

Institute of Lowland Forestry and Environment University of Novi Sad Novi Sad Serbia

Institute of Systematic Botany and Ecology Ulm University Ulm Germany

Instituto de Investigaciones en Biodiversidad y Medioambiente Consejo Nacional de Investigaciones Científicas y Técnicas Río Negro Argentina

Instituto de Investigaciones en Recursos Naturales Agroecología y Desarrollo Rural Sede Andina Universidad Nacional de Río Negro Río Negro Argentina

Instituto Pirenaico de Ecología Zaragoza Spain

Laboratorio de Dendrocronología e Historia Ambiental Instituto Argentino de Nivología Glaciología y Ciencias Ambientales CCT CONICET Mendoza Mendoza Argentina

Laboratory of Wood Biology and Xylarium Royal Museum for Central Africa Tervuren Belgium

National Institute for Research and Development in Forestry Marin Dracea Voluntari Romania

Natural Resources Institute Finland Espoo Finland

Northern Forestry Centre Canadian Forest Service Natural Resources Canada Edmonton AB Canada

Siberian Federal University Krasnoyarsk Russia

Sukachev Institute of Forest Siberian Division of the Russian Academy of Sciences Krasnoyarsk Russia

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

United States Geological Survey Western Ecological Research Center Sequoia and Kings Canyon Field Station Three Rivers CA United States

USDA Forest Service Forest Health Protection Saint Paul MN United States

Zobrazit více v PubMed

Adams H. D., Zeppel M. J., Anderegg W. R., Hartmann H., Landhäusser S. M., Tissue D. T., et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. PubMed DOI

Allen C. D., Breshears D. D., McDowell N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. DOI

Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. DOI

Amoroso M. M., Daniels L. D., Larson B. C. (2012). Temporal patterns of radial growth in declining DOI

Anderegg W. R., Berry J. A., Field C. B. (2012). Linking definitions, mechanisms, and modeling of drought-induced tree death. PubMed DOI

Anderegg W. R., Hicke J. A., Fisher R. A., Allen C. D., Aukema J., Bentz B., et al. (2015a). Tree mortality from drought, insects, and their interactions in a changing climate. PubMed DOI

Anderegg W. R., Kane J. M., Anderegg L. D. (2013a). Consequences of widespread tree mortality triggered by drought and temperature stress. DOI

Anderegg W. R., Klein T., Bartlett M., Sack L., Pellegrini A. F., Choat B., et al. (2016a). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PubMed DOI PMC

Anderegg W. R., Martinez-Vilalta J., Cailleret M., Camarero J. J., Ewers B. E., Galbraith D., et al. (2016b). When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. DOI

Anderegg W. R., Plavcová L., Anderegg L. D., Hacke U. G., Berry J. A., Field C. B. (2013b). Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. PubMed DOI

Anderegg W. R., Schwalm C., Biondi F., Camarero J. J., Koch G., Litvak M., et al. (2015b). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. PubMed DOI

Augusto L., Davies T. J., Delzon S., Schrijver A. (2014). The enigma of the rise of angiosperms: Can we untie the knot? PubMed DOI

Bates D., Mächler M., Bolker B., Walker S. (2014). Fitting linear mixed-effects models using lme4.

Bigler C., Bugmann H. (2004). Predicting the time of tree death using dendrochronological data. DOI

Bigler C., Rigling A. (2013). Precision and accuracy of tree-ring-based death dates of mountain pines in the Swiss National Park. DOI

Boden S., Kahle H. P., von Wilpert K., Spiecker H. (2014). Resilience of Norway spruce ( DOI

Bowman D. M., Brienen R. J., Gloor E., Phillips O. L., Prior L. D. (2013). Detecting trends in tree growth: not so simple. PubMed DOI

Brandt L. A., Butler P. R., Handler S. D., Janowiak M. K., Shannon P. D., Swanston C. W. (2017). Integrating science and management to assess forest ecosystem vulnerability to climate change. DOI

Bréda N., Huc R., Granier A., Dreyer E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. DOI

Brienen R. J., Zuidema P. A., During H. J. (2006). Autocorrelated growth of tropical forest trees: unraveling patterns and quantifying consequences. DOI

Brodribb T. J., Bowman D. J., Nichols S., Delzon S., Burlett R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. PubMed DOI

Bunn A. G., Jansma E., Korpela M., Westfall R. D., Baldwin J. (2013). Using simulations and data to evaluate mean sensitivity as a useful statistic in dendrochronology. DOI

Büntgen U., Esper J., Frank D. C., Treydte K., Schmidhalter M., Nicolussi K., et al. (2005). “The effect of power transformation on RCS–evidence from three millennial length alpine chronologies,” in

Büntgen U., Krusic P. J., Verstege A., Sangüesa-Barreda G., Wagner S., Camarero J. J., et al. (2017). New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since medieval times. DOI

Cailleret M., Bigler C., Bugmann H., Camarero J. J., Cufar K., Davi H., et al. (2016). Towards a common methodology for developing logistic tree mortality models based on ring-width data. PubMed DOI

Cailleret M., Jansen S., Robert E. M., DeSoto L., Aakala T., Antos J. A., et al. (2017). A synthesis of radial growth patterns preceding tree mortality. PubMed DOI

Cailleret M., Nourtier M., Amm A., Durand-Gillmann M., Davi H. (2014). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. DOI

Camarero J. J., Gazol A., Sangüesa-Barreda G., Oliva J., Vicente-Serrano S. M. (2015). To die or not to die: early warnings of tree dieback in response to a severe drought. DOI

Carrer M., Urbinati C. (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in PubMed DOI

Carvalhais N., Forkel M., Khomik M., Bellarby J., Jung M., Migliavacca M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. PubMed DOI

Cherubini P., Fontana G., Rigling D., Dobbertin M., Brang P., Innes J. L. (2002). Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. DOI

Choat B., Brodribb T. J., Brodersen C. R., Duursma R. A., López R., Medlyn B. E. (2018). Triggers of tree mortality under drought. PubMed DOI

Cook E. R., Peters K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. DOI

Csank A. Z., Miller A. E., Sherriff R. L., Berg E. E., Welker J. M. (2016). Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. PubMed DOI

Dai L., Vorselen D., Korolev K. S., Gore J. (2012). Generic indicators for loss of resilience before a tipping point leading to population collapse. PubMed DOI

Dakos V., Carpenter S. R., Brock W. A., Ellison A. M., Guttal V., Ives A. R., et al. (2012a). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PubMed DOI PMC

Dakos V., Carpenter S. R., van Nes E. H., Scheffer M. (2015). Resilience indicators: prospects and limitations for early warnings of regime shifts. DOI

Dakos V., Van Nes E. H., D’Odorico P., Scheffer M. (2012b). Robustness of variance and autocorrelation as indicators of critical slowing down. PubMed DOI

D’Arrigo R., Wilson R., Liepert B., Cherubini P. (2008). On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. DOI

Das A. J., Stephenson N. L., Davis K. P. (2016). Why do trees die? Characterizing the drivers of background tree mortality. PubMed DOI

Dobbertin M. (2005). Tree growth as an indicator of tree vitality and of tree reaction to environmental stress: a review. DOI

Dobbertin M., Brang P. (2001). Crown defoliation improves tree mortality models. DOI

Drake J. M., Griffen B. D. (2010). Early warning signals of extinction in deteriorating environments. PubMed DOI

Esper J., Schneider L., Smerdon J. E., Schöne B. R., Büntgen U. (2015). Signals and memory in tree-ring width and density data. DOI

Fischer E. M., Beyerle U., Knutti R. (2013). Robust spatially aggregated projections of climate extremes. DOI

Frank D., Esper J., Cook E. R. (2006). “On variance adjustments in tree-ring chronology development,” in

Franklin J. F., Shugart H. H., Harmon M. E. (1987). Tree death as an ecological process. DOI

Fritts H. C. (1976).

Galiano L., Martínez-Vilalta J., Lloret F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. PubMed DOI

Galiano L., Timofeeva G., Saurer M., Siegwolf R., Martínez-Vilalta J., Hommel R., et al. (2017). The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in PubMed DOI

Garcia-Forner N., Sala A., Biel C., Savé R., Martínez-Vilalta J. (2016). Individual traits as determinants of time to death under extreme drought in PubMed DOI

Gea-Izquierdo G., Guibal F., Joffre R., Ourcival J. M., Simioni G., Guiot J. (2015). Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. DOI

Gea-Izquierdo G., Viguera B., Cabrera M., Cañellas I. (2014). Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. DOI

Gessler A., Cailleret M., Joseph J., Schönbeck L., Schaub M., Lehmann M., et al. (2018). Drought induced tree mortality–a tree-ring isotope based conceptual model to assess mechanisms and predispositions. PubMed DOI

Gillner S., Rüger N., Roloff A., Berger U. (2013). Low relative growth rates predict future mortality of common beech ( DOI

Girard F., Vennetier M., Guibal F., Corona C., Ouarmim S., Herrero A. (2012). DOI

Guada G., Camarero J. J., Sánchez-Salguero R., Cerrillo R. M. N. (2016). Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species. PubMed DOI PMC

Guillemot J., Francois C., Hmimina G., Dufrêne E., Martin-StPaul N. K., Soudani K., et al. (2017). Environmental control of carbon allocation matters for modelling forest growth. PubMed DOI

Hagedorn F., Joseph J., Peter M., Luster J., Pritsch K., Geppert U., et al. (2016). Recovery of trees from drought depends on belowground sink control. PubMed DOI

Hartl-Meier C., Zang C., Büntgen U., Esper J., Rothe A., Göttlein A., et al. (2015). Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. PubMed DOI

Hartmann H., Moura C. F., Anderegg W. R., Ruehr N. K., Salmon Y., Allen C. D., et al. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. PubMed DOI

Hereş A. M., Camarero J. J., López B. C., Martínez-Vilalta J. (2014). Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. DOI

Heres A. M., Martínez-Vilalta J., López B. C. (2012). Growth patterns in relation to drought-induced mortality at two Scots pine ( DOI

Herguido E., Granda E., Benavides R., García-Cervigón A. I., Camarero J. J., Valladares F. (2016). Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. DOI

Hülsmann L., Bugmann H., Cailleret M., Brang P. (2018). How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. PubMed DOI

Johnson D. M., McCulloh K. A., Woodruff D. R., Meinzer F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? PubMed DOI

Jump A. S., Ruiz-Benito P., Greenwood S., Allen C. D., Kitzberger T., Fensham R., et al. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. PubMed DOI

Kane J. M., Kolb T. E. (2014). Short-and long-term growth characteristics associated with tree mortality in southwestern mixed-conifer forests. DOI

Körner C. (2015). Paradigm shift in plant growth control. PubMed DOI

Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). LmerTest package: tests in linear mixed effects models. DOI

Lenton T. M., Dakos V., Bathiany S., Scheffer M. (2017). Observed trends in the magnitude and persistence of monthly temperature variability. PubMed DOI PMC

Lin Y. S., Medlyn B. E., Duursma R. A., Prentice I. C., Wang H., Baig S., et al. (2015). Optimal stomatal behavior around the world. DOI

Lloret F., Escudero A., Iriondo J. M., Martínez-Vilalta J., Valladares F. (2012). Extreme climatic events and vegetation: the role of stabilizing processes. DOI

Lloret F., Keeling E. G., Sala A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. DOI

Macalady A. K., Bugmann H. (2014). Growth-mortality relationships in piñon pine ( PubMed DOI PMC

Manion P. D. (1991).

Martín-Benito D., Cherubini P., Del Río M., Cañellas I. (2008). Growth response to climate and drought in DOI

Martínez-Vilalta J., Lloret F. (2016). Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. DOI

Martínez-Vilalta J., Sala A., Asensio D., Galiano L., Hoch G., Palacio S., et al. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. DOI

McDowell N., Allen C. D., Marshall L. (2010). Growth, carbon-isotope discrimination, and drought-associated mortality across a DOI

Mencuccini M., Munné-Bosch S. (2017). “Physiological and biochemical processes related to ageing and senescence in plants,” in

Mérian P., Lebourgeois F. (2011). Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. DOI

Millar C. I., Westfall R. D., Delany D. L. (2007). Response of high-elevation limber pine ( DOI

Millar C. I., Westfall R. D., Delany D. L., Bokach M. J., Flint A. L., Flint L. E. (2012). Forest mortality in high-elevation whitebark pine ( DOI

Mueller R. C., Scudder C. M., Porter M. E., Talbot Trotter R., Gehring C. A., Whitham T. G. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. DOI

Nesmith J. C., Das A. J., O’Hara K. L., van Mantgem P. J. (2015). The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. DOI

Ogle K., Whitham T. G., Cobb N. S. (2000). Tree-ring variation in pinyon predicts likelihood of death following severe drought. DOI

Olde Rikkert M. G., Dakos V., Buchman T. G., de Boer R., Glass L., Cramer A. O., et al. (2016). Slowing down of recovery as generic risk marker for acute severity transitions in chronic diseases. PubMed DOI

Pace M. L., Carpenter S. R., Cole J. J. (2015). With and without warning: managing ecosystems in a changing world. DOI

Palacio S., Hernández R., Maestro-Martínez M., Camarero J. J. (2012). Fast replenishment of initial carbon stores after defoliation by the pine processionary moth and its relationship to the re-growth ability of trees. DOI

Pangle R. E., Limousin J. M., Plaut J. A., Yepez E. A., Hudson P. J., Boutz A. L., et al. (2015). Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland. PubMed DOI PMC

Pedersen B. S. (1998). The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. DOI

Pellizzari E., Camarero J. J., Gazol A., Sangüesa-Barreda G., Carrer M. (2016). Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. PubMed DOI

Peters R. L., Groenendijk P., Vlam M., Zuidema P. A. (2015). Detecting long-term growth trends using tree rings: a critical evaluation of methods. PubMed DOI

Plavcová L., Hoch G., Morris H., Ghiasi S., Jansen S. (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. PubMed DOI

R Core Team (2017).

Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J. A., Turner M. G., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. DOI

Reyer C. P., Leuzinger S., Rammig A., Wolf A., Bartholomeus R. P., Bonfante A., et al. (2013). A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. PubMed DOI PMC

Rogers B. M., Solvik K., Hogg E. H., Ju J., Masek J. G., Michaelian M., et al. (2018). Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. PubMed DOI

Royer P. D., Cobb N. S., Clifford M. J., Huang C. Y., Breshears D. D., Adams H. D., et al. (2011). Extreme climatic event-triggered overstorey vegetation loss increases understorey solar input regionally: primary and secondary ecological implications. DOI

Sánchez-Salguero R., Navarro R. M., Camarero J. J., Fernández-Cancio Á. (2010). Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. DOI

Sangüesa-Barreda G., Linares J. C., Camarero J. J. (2015). Reduced growth sensitivity to climate in bark-beetle infested Aleppo pines: connecting climatic and biotic drivers of forest dieback. DOI

Scheffer M., Bascompte J., Brock W. A., Brovkin V., Carpenter S. R., Dakos V., et al. (2009). Early warning signals for critical transitions. PubMed DOI

Schiestl-Aalto P., Kulmala L., Mäkinen H., Nikinmaa E., Mäkelä A. (2015). CASSIA–a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. PubMed DOI

Schulman E. (1956).

Steppe K., Niinemets Ü, Teskey R. O. (2011). “Tree size- and age-related changes in leaf physiology and their influence on carbon gain,” in DOI

Suarez M. L., Ghermandi L., Kitzberger T. (2004). Factors predisposing episodic drought-induced tree mortality in Nothofagus–site, climatic sensitivity and growth trends. DOI

Timofeeva G., Treydte K., Bugmann H., Rigling A., Schaub M., Siegwolf R., et al. (2017). Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. PubMed DOI

Trumbore S., Brando P., Hartmann H. (2015). Forest health and global change. PubMed DOI

Veraart A. J., Faassen E. J., Dakos V., van Nes E. H., Lürling M., Scheffer M. (2012). Recovery rates reflect distance to a tipping point in a living system. PubMed DOI

Verbesselt J., Umlauf N., Hirota M., Holmgren M., Van Nes E. H., Herold M., et al. (2016). Remotely sensed resilience of tropical forests. DOI

von Arx G., Arzac A., Fonti P., Frank D., Zweifel R., Rigling A., et al. (2017). Responses of sapwood ray parenchyma and non-structural carbohydrates of DOI

Wissel C. (1984). A universal law of the characteristic return time near thresholds. PubMed DOI

Yin J., Bauerle T. L. (2017). A global analysis of plant recovery performance from water stress. DOI

Zeppel M. J., Harrison S. P., Adams H. D., Kelley D. I., Li G., Tissue D. T., et al. (2015). Drought and resprouting plants. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...