variance
Dotaz
Zobrazit nápovědu
- MeSH
- dítě MeSH
- interpersonální vztahy MeSH
- kognice MeSH
- psychologické testy MeSH
- rodina MeSH
- sociální přizpůsobení MeSH
- Check Tag
- dítě MeSH
Wiley series in probability and statistics
3rd ed. xvii, 448 s.
- MeSH
- biochemie MeSH
- klinická chemie MeSH
- lidé MeSH
- multivariační analýza MeSH
- stopové prvky analýza MeSH
- Check Tag
- lidé MeSH
1st pub. xix, 265 s. : il. ; 22 cm
- Klíčová slova
- ANOVA,
- MeSH
- analýza rozptylu MeSH
- faktorová analýza statistická MeSH
- statistické modely MeSH
- statistika jako téma MeSH
- Publikační typ
- příručky MeSH
- Konspekt
- Statistika
- NLK Obory
- statistika, zdravotnická statistika
Monographs on Statistics and Applied Probability ; 97
169 s.
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
- MeSH
- fotony * MeSH
- lidé MeSH
- neutrofily metabolismus MeSH
- počítačová simulace MeSH
- Poissonovo rozdělení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
1st ed. xxii, 777 s.
- MeSH
- biometrie MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- statistika, zdravotnická statistika
- MeSH
- chlorid vápenatý MeSH
- chloridy MeSH
- elektrofyziologie MeSH
- iontové kanály MeSH
- oocyty fyziologie MeSH
- žáby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Local stereological techniques can be used for particle volume estimation based on information collected on a section plane through a reference point of the particle. We present methods for variability estimation of the local stereological volume estimators. This variability arises during the stereological estimation procedure and in the particle population. Both of these components can be estimated separately from planar sections. Our aim is to give a preliminary analysis of the possibility to include the particle structure interaction into the estimation procedure. For this reason, not only the section profiles, but also their locations, have to be recorded. The methods are applied for the sectional data obtained from neurons in the hippocampal brain region subiculum of four 3-month-old male Wistar rats. The proposed procedure enables one to obtain information about particle volume distribution.
- MeSH
- hipokampus cytologie MeSH
- krysa rodu rattus MeSH
- mikroskopie metody MeSH
- mozek cytologie MeSH
- pilotní projekty MeSH
- počítačové zpracování obrazu metody MeSH
- potkani Wistar MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH