Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
QJ1510088
Ministerstvo Zem?d?lstv?
LO1509; LTC18009
Ministerstvo ?kolstv?, Ml?de?e a T?lov?chovy
PubMed
30746611
DOI
10.1007/s12223-019-00690-7
PII: 10.1007/s12223-019-00690-7
Knihovny.cz E-resources
- MeSH
- Bacillus amyloliquefaciens metabolism physiology MeSH
- Biological Control Agents * MeSH
- Species Specificity MeSH
- Fusarium growth & development metabolism MeSH
- Glycolipids metabolism MeSH
- Coculture Techniques MeSH
- Metabolomics MeSH
- Microbial Interactions MeSH
- Mycelium growth & development metabolism MeSH
- Mycotoxins metabolism MeSH
- Plant Diseases microbiology prevention & control MeSH
- Pseudomonas aeruginosa metabolism physiology MeSH
- Siderophores metabolism MeSH
- Trichoderma metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biological Control Agents * MeSH
- Glycolipids MeSH
- Mycotoxins MeSH
- rhamnolipid MeSH Browser
- Siderophores MeSH
There are increasing efforts to identify biocontrol-active microbial metabolites in order to improve strategies for biocontrol of phytopathogens. In this work, Fusarium oxysporum f. sp. conglutinans was confronted with three different biocontrol agents: Trichoderma harzianum, Bacillus amyloliquefaciens, and Pseudomonas aeruginosa in dual culture bioassays. Metabolites produced during the microbial interactions were screened by a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). T. harzianum exhibited the strongest inhibition of growth of F. oxysporum resulting in overlay of the pathogen colony with its mycelium. Recorded metabolite profiles suggested a direct attack of F. oxysporum mycelium by T. harzianum and B. amyloliquefaciens by means of membrane-attacking peptaibols and a set of antimicrobial lipopeptides and siderophores, respectively. The direct mode of the biocontrol activity of T. harzianum and B. amyloliquefaciens corresponded to their ability to suppress F. oxysporum production of mycotoxin beauvericin suggesting that this ability is not specific only for Trichoderma species. In the case of P. aeruginosa, siderophores pyoverdine E/D and two rhamnolipids were produced as major bacterial metabolites; the rhamnolipid production was blocked by F. oxysporum. The results showed that this type of biocontrol activity was the least effective against F. oxysporum. The effective application of MALDI-MS profiling to the screening of nonvolatile microbial metabolites produced during the interaction of the phytopathogen and the biocontrol microorganisms was demonstrated.
See more in PubMed
Biochim Biophys Acta Proteins Proteom. 2017 Jul;1865(7):768-775 PubMed
Curr Med Chem. 2015;22(2):165-86 PubMed
J Am Soc Mass Spectrom. 2017 May;28(5):901-907 PubMed
Front Microbiol. 2016 Jan 05;6:1495 PubMed
Front Microbiol. 2014 Nov 21;5:636 PubMed
Toxicon. 2010 Sep 1;56(3):349-54 PubMed
Biotechnol Bioeng. 2003 Feb 5;81(3):316-22 PubMed
J Microbiol. 2016 Nov;54(11):732-744 PubMed
Pol J Microbiol. 2017 Mar 30;66(1):85-100 PubMed
Sci Rep. 2015 Sep 03;5:13663 PubMed
Plant Physiol Biochem. 2017 Sep;118:320-332 PubMed
Mol Plant Pathol. 2007 Mar;8(2):163-72 PubMed
Biotechnol Prog. 2019 Jan;35(1):e2738 PubMed
Appl Environ Microbiol. 2015 Dec 11;82(5):1372-1382 PubMed
Appl Environ Microbiol. 2013 Jan;79(1):18-31 PubMed
Bioresour Technol. 2016 Dec;221:291-299 PubMed
Microbiology. 2012 Jan;158(Pt 1):166-75 PubMed
Int J Biol Macromol. 2017 Feb;95:72-79 PubMed
J Appl Microbiol. 2008 Mar;104(3):692-8 PubMed
Environ Microbiol. 2016 Nov;18(11):3991-4004 PubMed
Toxins (Basel). 2017 Jan 25;9(2): PubMed
Plant Dis. 2017 Apr;101(4):534-543 PubMed
PLoS One. 2015 Jan 08;10(1):e0117040 PubMed
Appl Environ Microbiol. 2017 Sep 15;83(19): PubMed
Mol Plant Pathol. 2012 May;13(4):414-30 PubMed
J Biol Chem. 2011 Feb 11;286(6):4544-54 PubMed
Appl Microbiol Biotechnol. 2010 Jun;87(1):21-9 PubMed
Molecules. 2012 Feb 24;17(3):2367-77 PubMed
J Plant Physiol. 2017 Mar;210:84-94 PubMed
Mar Drugs. 2014 Nov 19;12(11):5503-26 PubMed
Plant Physiol Biochem. 2014 Oct;83:40-50 PubMed
Plant Cell. 2012 Sep;24(9):3805-22 PubMed
Microbiol Res. 2016 Jan;182:31-9 PubMed
Eur J Med Chem. 2017 Jan 27;126:1011-1020 PubMed
Mol Plant Microbe Interact. 2007 Apr;20(4):430-40 PubMed
J Am Soc Mass Spectrom. 2015 Oct;26(10):1780-6 PubMed
PLoS One. 2016 May 27;11(5):e0155851 PubMed
Appl Environ Microbiol. 2009 Jun;75(12):4194-6 PubMed
Int Microbiol. 2004 Dec;7(4):249-60 PubMed