The Significance of Entropy in Grain Boundary Segregation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P108/12/G043
Grantová Agentura České Republiky
PubMed
30764530
PubMed Central
PMC6384604
DOI
10.3390/ma12030492
PII: ma12030492
Knihovny.cz E-zdroje
- Klíčová slova
- entropy, grain boundaries, materials properties, solute segregation, thermodynamics,
- Publikační typ
- časopisecké články MeSH
The role of entropy in materials science is demonstrated in this report in order to establish its importance for the example of solute segregation at the grain boundaries of bcc iron. We show that substantial differences in grain boundary chemistry arise if their composition is calculated with or without consideration of the entropic term. Another example which clearly documents the necessity of implementing the entropic term in materials science is the enthalpy-entropy compensation effect. Entropy also plays a decisive role in the anisotropy of grain boundary segregation and in interface characterization. The consequences of the ambiguous determination of grain boundary segregation on the prediction of materials behavior are also briefly discussed. All the mentioned examples prove the importance of entropy in the quantification of grain boundary segregation and consequently of other materials properties.
Zobrazit více v PubMed
Lejček P. Grain Boundary Segregation in Metals. Springer; Berlin, Germany: 2010. DOI
Watanabe T. An approach to grain-boundary design for strong and ductile polycrystals. Res. Mech. 1984;11:47–84.
Kirchheim R. Grain coarsening inhibited by solute segregation. Acta Mater. 2002;50:413–419. doi: 10.1016/S1359-6454(01)00338-X. DOI
Lejček P., Hofmann S. Thermodynamics and structural aspects of grain boundary segregation. Crit. Rev. Sol. State Mater. Sci. 1995;20:1–85. doi: 10.1080/10408439508243544. DOI
Lejček P., Šob M., Paidar V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017;87:83–139. doi: 10.1016/j.pmatsci.2016.11.001. DOI
Kaptay G. Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J. Mater. Sci. 2016;51:1738–1755. doi: 10.1007/s10853-015-9533-8. DOI
Všianská M., Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 2011;56:817–840. doi: 10.1016/j.pmatsci.2011.01.008. DOI
Yamaguchi M. First-principles study on the grain boundary embrittlement of metals by solute segregation: Part, I. Iron (Fe, Al, Cu)-hydrogen (H) systems. Metall. Mater. Trans. A. 2011;42:319–329. doi: 10.1007/s11661-010-0381-5. DOI
Yamaguchi M., Ebihara K.I., Itakura M., Kadoyoshi T., Suzudo T., Kaburaki H. First-principles study on the grain boundary embrittlement of metals by solute segregation: Part II. Metal (Fe)-solute (B, C, P, and S) systems. Metall. Mater. Trans. A. 2011;42:330–339. doi: 10.1007/s11661-010-0380-6. DOI
Suzudo T., Kaburaki H., Yamaguchi M. Modeling of the grain boundary segregation of helium in a-Fe. J. Nucl. Mater. 2011;417:1102–1105. doi: 10.1016/j.jnucmat.2011.02.014. DOI
Suzudo T., Yamaguchi M. Simulation of He embrittlement at grain boundaries in bcc transition metals. J. Nucl. Mater. 2015;465:695–701. doi: 10.1016/j.jnucmat.2015.07.002. DOI
Lejček P., Zheng L., Hofmann S., Šob M. Applied thermodynamics: Grain boundary segregation. Entropy. 2014;16:1462–1483. doi: 10.3390/e16031462. DOI
Lejček P., Šob M., Paidar V., Vitek V. Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr. Mater. 2013;68:547–550. doi: 10.1016/j.scriptamat.2012.11.019. DOI
Lejček P., Hofmann S. Interstitial and substitutional solute segregation at individual grain boundaries of α-iron: Data revisited. J. Phys. Condens. Matter. 2016;28:064001. doi: 10.1088/0953-8984/28/6/064001. PubMed DOI
Lejček P., Hofmann S. Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction. Crit. Rev. Sol. State Mater. Sci. 2008;33:133–163. doi: 10.1080/10408430801907649. DOI
Lejček P., Jäger A., Gärtnerová V. Reversed anisotropy of grain boundary properties and its effect on grain boundary engineering. Acta Mater. 2010;58:1930–1937. doi: 10.1016/j.actamat.2009.11.036. DOI
Stolarz J., LeCoze J. Intergranular corrosion of stainless steels under transpassive conditions. Study of silicon segregation in <001> tilt bicrystals. J. Phys. Fr. 1990;51:641–645. doi: 10.1051/jphyscol:19901101. DOI
Grabke H.J. Grain boundary segregation of impurities in iron and steels and effects on steel properties. In: Briant C.L., Dekker M., editors. Impurities in Engineering Materials: Impact, Reliability and Control. Routledge; New York, NY, USA: 2017. pp. 143–192. DOI
Briant C.L. The effect of grain boundary segregation on intergranular failures. In: Briant C.L., Dekker M., editors. Impurities in Engineering Materials: Impact, Reliability and Control. Routledge; New York, NY, USA: 2017. pp. 193–224. DOI
Kalderon D. Steam turbine failure at Hinkley Point ‘A’. Proc. Inst. Mech. Eng. 1972;186:341–377. doi: 10.1243/PIME_PROC_1972_186_037_02. DOI
Janovec J., Grman D., Perháčová J., Lejček P., Patscheider J., Ševc P. Thermodynamics of phosphorus grain boundary segregation in polycrystalline low-alloy steels. Surf. Interface Anal. 2000;30:354–358. doi: 10.1002/1096-9918(200008)30:1<354::AID-SIA732>3.0.CO;2-J. DOI
Tipler H.R., Hopkins B.E. The creep cavitation of commercial and high-purity Cr-Mo-V steels. Met. Sci. 1976;10:47–56. doi: 10.1179/030634576790432056. DOI
Krautschick H.J., Grabke H.J., Diekman W. The effect of phosphorus on the mechanism of intergranular stress corrosion cracking of mild steels in nitrate solutions. Corros. Sci. 1988;28:251–258. doi: 10.1016/0010-938X(88)90108-4. DOI
Darling K.A., Tschopp M.A., Vanleeuwen B.K., Atwater M.A., Liu Z.K. Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput. Mater. Sci. 2014;84:255–266. doi: 10.1016/j.commatsci.2013.10.018. DOI
The Effect of Vacancies on Grain Boundary Segregation in Ferromagnetic fcc Ni