The Effect of Vacancies on Grain Boundary Segregation in Ferromagnetic fcc Ni
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA16 24711S
Grant Agency of the Czech Republic
CEITEC 2020 - Project No. LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
Institutional Project No. RVO:68081723
Academy of Sciences of the Czech Republic
PubMed
32268587
PubMed Central
PMC7221896
DOI
10.3390/nano10040691
PII: nano10040691
Knihovny.cz E-zdroje
- Klíčová slova
- Si and Al impurity, defects binding energies, fcc Ni, grain boundary energy, magnetism, segregation energy, tilt 5(210) grain boundary, vacancy,
- Publikační typ
- časopisecké články MeSH
This work presents a comprehensive and detailed ab initio study of interactions between the tilt 5(210) grain boundary (GB), impurities X (X = Al, Si) and vacancies (Va) in ferromagnetic fcc nickel. To obtain reliable results, two methods of structure relaxation were employed: the automatic full relaxation and the finding of the minimum energy with respect to the lattice dimensions perpendicular to the GB plane and positions of atoms. Both methods provide comparable results. The analyses of the following phenomena are provided: the influence of the lattice defects on structural properties of material such as lattice parameters, the volume per atom, interlayer distances and atomic positions; the energies of formation of particular structures with respect to the standard element reference states; the stabilization/destabilization effects of impurities (in substitutional (s) as well as in tetragonal (iT) and octahedral (iO) interstitial positions) and of vacancies in both the bulk material and material with GBs; a possibility of recombination of Si(i) +Va defect to Si(s) one with respect to the Va position; the total energy of formation of GB and Va; the binding energies between the lattice defects and their combinations; impurity segregation energies and the effect of Va on them; magnetic characteristics in the presence of impurities, vacancies and GBs. As there is very little experimental information on the interaction between impurities, vacancies and GBs in fcc nickel, most of the present results are theoretical predictions, which may motivate future experimental work.
Zobrazit více v PubMed
Lejček P. Springer Series in Materials Science. Volume 136 Springer; Berlin/Heidelberg, Germany: 2010. Grain Boundary Segregation in Metals.
Všianská M., Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 2011;56:817. doi: 10.1016/j.pmatsci.2011.01.008. DOI
Lejček P., Šob M., Paidar V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017;87:83. doi: 10.1016/j.pmatsci.2016.11.001. DOI
Všianská M., Vémolová H., Šob M. Segregation of sp-impurities at grain boundaries and surfaces: Comparison of fcc cobalt and nickel. Model. Simul. Mater. Sci. Eng. 2017;25:085004. doi: 10.1088/1361-651X/aa86bf. DOI
Razumovskiy V.I., Lozovoi A.Y., Razumovskii I.M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2015;82:369. doi: 10.1016/j.actamat.2014.08.047. DOI
Liu W., Han H., Ren C., Yin H., Zou Y., Huai P., Xu H. Effects of rare-earth on the cohesion of Ni Σ5(012) grain boundary from first-principles calculations. Comput. Mater. Sci. 2015;96:374. doi: 10.1016/j.commatsci.2014.09.035. DOI
Wenguan L., Yuan Q., Dongxun Z., Youshi Z., Xingbo H., Xinxin C., Huiqin Y., Guo Y., Guanghua W., Shengwei W., et al. A theoretical study of the effects of sp-elements on hydrogen in nickel-based alloys. Comput. Mater. Sci. 2017;128:37.
Bentria E.T., Lefkaier I.K., Benghia A., Bentria B., Kanoun M.B., Goumri-Said S. Toward a better understanding of the enhancing/embrittling effects of impurities in Nickel grain boundaries. Sci. Rep. 2019;9:1424. doi: 10.1038/s41598-019-50361-3. PubMed DOI PMC
Divinski S.V., Edelhoff H. Diffusion and segregation of silver in copper ∑5(310) grain boundary. Phys. Rev. B. 2012;85:144104. doi: 10.1103/PhysRevB.85.144104. DOI
Muller D.A., Subramanian S., Batson P.E., Silcox J., Sass S.L. Structure, chemistry and bonding at grain boundaries in Ni3Al—I. The role of boron in ductilizing grain boundaries. Acta Mater. 1996;44:1637. doi: 10.1016/1359-6454(95)00267-7. DOI
Aksoy D., Dingreville R., Spearot D.E. Embedded-atom method potential parameterized for sulfur-induced embrittlement of nickel. Model. Simul. Mater. Sci. Eng. 2019;27:085016. doi: 10.1088/1361-651X/ab4c48. DOI
Lejček P., Všianská M., Šob M. Recent trends and open questions in grain boundary segregation. J. Mater. Res. 2018;33:2647. doi: 10.1557/jmr.2018.230. DOI
Prakash S. Operational Challenges and High-Temperature Materials. Woodhead Pub.; Waltham, MA, USA: 2014. Structural alloys for power plants.
Wang M., Deng Q., Du J., Tian Y., Zhu J. The Effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy. Mater. Trans. 2015;56:635. doi: 10.2320/matertrans.M2014378. DOI
Zhu H.Q., Guo S.R., Guan H.R., Zhu V.X., Hu Z.Q., Murata V., Morinaga M. The effect of silicon on the microstructure and segregation of directionally solidified IN738 superalloy. Mater. High Temp. 2016;12:285. doi: 10.1080/09603409.1994.11752532. DOI
Lefkaier I.K., Bentria E.T. The Effect of Impurities in Nickel Grain Boundary: Density Functional Theory Study. In: Tanski T., Borek W., editors. Study of Grain Boundary Character. Volume 1. IntechOpen; Rijeka, Croatia: 2017. p. 1.
Smith R.W., Geng W.T., Geller C.B., Wu R., Freeman A.J. The effect of Li, He and Ca on grain boundary cohesive strength in Ni. Scr. Mater. 2000;43:957. doi: 10.1016/S1359-6462(00)00521-2. DOI
Brodetskii I.L., Kharchevnikov V.P., Belov B.F., Trotsan A.I. Effect of calcium on grain boundary embrittlement of structural steel strengthened with carbonitrides. Met. Sci. Heat Treat. 1995;37:200. doi: 10.1007/BF01156894. DOI
Floreen S., Westbrook J.H. Grain boundary segregation and the grain size dependence of strength of nickel-sulfur alloys. Acta Metall. 1969;17:1175. doi: 10.1016/0001-6160(69)90095-9. DOI
Kronberg M.L., Wilson F.H. Secondary recrystallization in copper. Trans. AIME. 1949;185:501. doi: 10.1007/BF03398387. DOI
Wang G.J., Sutton A.P., Vítek V. A computer simulation study of <001> and <111> tilt boundaries: The multiplicity of structures. Acta Metall. 1984;32:1093. doi: 10.1016/0001-6160(84)90013-0. DOI
Wetzel J.T., Machlin E.S. On calculated energies of segregation, grain boundary energies and lattice energy functions. Scr. Metall. 1983;17:555. doi: 10.1016/0036-9748(83)90352-6. DOI
Chen P., Srolovitz D.J., Voter A.F. Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni3Al. J. Mater. Res. 1989;4:62. doi: 10.1557/JMR.1989.0062. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. 1993;48:13115. doi: 10.1103/PhysRevB.48.13115. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Haglund J., Guillermet F., Grimvall G., Korling M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B. 1993;48:11685. doi: 10.1103/PhysRevB.48.11685. PubMed DOI
Kohlhaas R., Donner P., Schmitz-Pranghe N., Angew Z. The temperature-dependence of the lattice parameters of iron, cobalt, and nickel in the high temperature range. Physics. 1967;23:245.
Všianská M. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2013. Electronic Structure and Properties of Grain Boundaries in Nickel.
Saal J.E., Kirklin S., Aykol M., Meredig B., Wolverton C. The open quantum materials database (OQMD): Materials design and discovery with high-throughput density functional theory. J. Miner. Met. Mater. Soc. 2013;65:1501. doi: 10.1007/s11837-013-0755-4. DOI
Kirklin S., Saal J.E., Meredig B., Thompson A., Doak J.W., Aykol M., Rühl S., Wolverton C. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. Comput. Mater. 2015;1:15010. doi: 10.1038/npjcompumats.2015.10. DOI
Connétable D., Andrieu E., Monceau D. First-principles nickel database: Energetics of impurities and defects. Comput. Mater. Sci. 2015;101:77. doi: 10.1016/j.commatsci.2015.01.017. DOI
Kandaskalov D., Monceau D., Mijoule C., Connétable D. First-principles study of sulfur multi-absorption in nickel and its segregation to the Ni(100) and Ni(111) surfaces. Surf. Sci. 2013;617:15. doi: 10.1016/j.susc.2013.06.019. DOI
Korhonen T., Puska M.J., Nieminen R.M. Vacancy-formation energies for fcc and bcc transition metals. Phys. Rev. B. 1995;51:9526. doi: 10.1103/PhysRevB.51.9526. PubMed DOI
Wolff J., Franz M., Kluin J.E., Schmid D. Vacancy formation in nickel and α-nickel-carbon alloy. Acta Mater. 1997;45:4759. doi: 10.1016/S1359-6454(97)00112-2. DOI
Connétable D., Ter-Ovanessian B., Andrieu E. Diffusion and segregation of niobium in fcc-nickel. J. Phys. Condens. Matter. 2012;24:095010. doi: 10.1088/0953-8984/24/9/095010. PubMed DOI
Nazarov R., Hickel T., Neugebauer J. Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Phys. Rev. B. 2014;89:144108. doi: 10.1103/PhysRevB.89.144108. DOI
Tanguy D., Wang Y., Connétable D. Stability of vacancy-hydrogen clusters in nickel from first-principles calculations. Acta Mater. 2014;78:135. doi: 10.1016/j.actamat.2014.06.021. DOI
Subashiev A.V., Nee H.H. Hydrogen trapping at divacancies and impurity-vacancy complexes in nickel: First principles study. J. Nucl. Mater. 2017;487:135. doi: 10.1016/j.jnucmat.2017.01.037. DOI
Kostromin B.F., Plishkin Y.M., Podchinyonov I.E., Trakhtenberg I.S. Detecting the relation between the diffusion parameters and the point defect microscopic characteristics by a computer simulation method. Fiz. Met. Metalloved. 1983;55:450.
Ackland G.I., Tichy G., Vitek V., Finnis M.W. Simple N-body potentials for the noble metals and nickel. Philos. Mag. A. 1987;56:735. doi: 10.1080/01418618708204485. DOI
Krause U., Kuska J.P., Wedell R. Monovacancy formation energies in cubic crystals. Phys. Status Solidi. 1989;151:479. doi: 10.1002/pssb.2221510208. DOI
Rosato V., Guillope M., Legrand B. Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos. Mag. A. 1989;59:321. doi: 10.1080/01418618908205062. DOI
Ghorai A. Calculation of some defect parameters in F.C.C. Metals. Phys. Status Solidi. 1991;167:551. doi: 10.1002/pssb.2221670217. DOI
Černý M., Šesták P., Řehák P., Všianská M., Šob M. Atomistic approaches to cleavage of interfaces. Model. Simul. Mater. Sci. Eng. 2019;27:035007. doi: 10.1088/1361-651X/ab0293. DOI
Čák M., Šob M., Hafner J. First-principles study of magnetism at grain boundaries in iron and nickel. Phys. Rev. B. 2008;78:054418. doi: 10.1103/PhysRevB.78.054418. DOI
Yamaguchi M., Shiga M., Kaburaki H. Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5 (012) symmetrical tilt grain boundary: A first-principles study. J. Phys. Condens. Matter. 2004;16:3933. doi: 10.1088/0953-8984/16/23/013. DOI
Shvindlerman L.S., Gottstein G. Cornerstones of grain structure evolution and stability: Vacancies, boundaries, triple junctions. J. Mater. Sci. 2005;40:819. doi: 10.1007/s10853-005-6498-z. DOI
Shvindlerman L.S., Gottstein G., Ivanov V.A., Molodov D.A., Kolesnikov D., Lojkowski W. Grain boundary excess free volume—direct thermodynamic measurement. J. Mater. Sci. 2006;41:7725. doi: 10.1007/s10853-006-0563-0. DOI
Berthier F., Legrand B., Tréglia G. New structures and atomistic analysis of the polymorphism for the ∑5(210) [001] Tilt Boundary. Interface Sci. 2000;8:55. doi: 10.1023/A:1008783220877. DOI
Rajagopalan M., Tschopp M.A., Solanki K.N. Grain boundary segregation of interstitial and substitutional impurity atoms in alpha-iron. J. Miner. Met. Mater. Soc. 2014;66:129. doi: 10.1007/s11837-013-0807-9. DOI
Yamaguchi M., Shiga M., Kaburaki H. Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science. 2005;307:393. doi: 10.1126/science.1104624. PubMed DOI
Všianská M., Šob M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys. Rev. B. 2011;84:014418. doi: 10.1103/PhysRevB.84.014418. DOI
Turek I., Kudrnovský J., Šob M., Drchal V., Weinberger P. Ferromagnetism of imperfect ultrathin Ru and Rh films on a Ag (001) substrate. Phys. Rev. Lett. 1995;74:2551. doi: 10.1103/PhysRevLett.74.2551. PubMed DOI
Kisker H., Kronmüller H., Schaefer H.E., Suzuki T. Magnetism and microstructure of nanocrystalline nickel. J. Appl. Phys. 1996;79:5143. doi: 10.1063/1.361535. DOI
Suliţanu B., Brînzã F. Structure-properties relationships in electrodeposited Ni-W thin films with columnar nanocrystallites. J. Optoelectron. Adv. Mater. 2003;5:421.
Tanimoto H., Pasquini L., Prümmer R., Kronmüller H., Schaefer H.E. Self-diffusion and magnetic properties in explosion densities nanocrystalline Fe. Scr. Mater. 2000;42:961. doi: 10.1016/S1359-6462(00)00326-2. DOI
Kecskes L., Qiu X., Lin R., Graeter J., Guo S.M., Wang J. Army Research Laboratory Report ARL-TR-5507. U.S. Army Research Research Laboratory; Aberdeen Proving Ground, MD, USA: 2011. Combustion synthesis reaction behavior of cold-rolled Ni/Al and Ti/Al multilayers.
Nash P., Nash A. The Ni−Si (Nickel-Silicon) system. Bull. Alloy Phase Diagr. 1987;8:6. doi: 10.1007/BF02868885. DOI
Lejček P., Šob M., Paidar V., Vitek V. Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr. Mater. 2013;68:547. doi: 10.1016/j.scriptamat.2012.11.019. DOI
Farkas D. Atomistic theory and computer simulation of grain boundary structure and diffusion. J. Phys. Condens. Matter. 2000;12:497. doi: 10.1088/0953-8984/12/42/201. DOI
Sørensen M.R., Mishin Y., Voter A.F. Diffusion mechanisms in Cu grain boundaries. Phys. Rev. B. 2000;62:3658. doi: 10.1103/PhysRevB.62.3658. DOI
Brokman A., Bristove P.D., Ballufi R.W. Computer simulation study of the structure of vacancies in grain boundaries. J. Appl. Phys. 1981;52:6116. doi: 10.1063/1.328508. DOI
Gillan M.J. Calculation of the vacancy formation energy in aluminium. J. Phys. Condens. Matter. 1989;1:689. doi: 10.1088/0953-8984/1/4/005. DOI
Mattsson T.R., Mattsson A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys. Rev. B. 2002;66:214110. doi: 10.1103/PhysRevB.66.214110. DOI
Zhang P., Zou T., Zhao J., Zheng P., Chen J. Effect of helium and vacancies in a vanadium grain boundary by first-principles. Nucl. Instrum. Methods Phys. Res. Sect. B. 2015;352:121. doi: 10.1016/j.nimb.2015.01.009. DOI
Janot C., George B., Delcroix P. Point defects in vanadium investigated by Mossbauer spectroscopy and positron annihilation. J. Phys. F Met. Phys. 1982;12:47. doi: 10.1088/0305-4608/12/1/006. DOI
Fitzsimmons M.R., Röll A., Burkel E., Sickafus K.E., Nastasi M.A., Smith G.S., Pynn R. The magnetization of a grain boundary in nickel. Nanostructured Mater. 1995;6:539. doi: 10.1016/0965-9773(95)00115-8. DOI
Hirayama K., Ii S., Tsurekawa S. Transmission electron microscopy/electron energy loss spectroscopy measurements and ab initio calculation of local magnetic moments at nickel grain boundaries. Sci. Technol. Adv. Mater. 2014;15:015005. doi: 10.1088/1468-6996/15/1/015005. PubMed DOI PMC
Crampin S., Vvedensky D.D., MacLaren J.M., Eberhart M.E. Electronic structure near (210) tilt boundaries in nickel. Phys. Rev. B. 1989;40:3413. doi: 10.1103/PhysRevB.40.3413. PubMed DOI
Geng W.T., Freeman A.J., Wu R., Geller C.B., Raynolds J.E. Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a 5 nickel grain boundary. Phys. Rev. B. 1999;60:7149. doi: 10.1103/PhysRevB.60.7149. DOI
Szpunar B., Erb U., Palumbo G., Aust K.T., Lewis L.J. Magnetism in complex atomic structures: Grain boundaries in nickel. Phys. Rev. B. 1996;53:5547. doi: 10.1103/PhysRevB.53.5547. PubMed DOI
Kuriplach J., Melikhova O., Hou M., Van Petegem S., Zhurkin E., Šob M. Positron annihilation in vacancies at grain boundaries in metals. Appl. Surf. Sci. 2008;255:128. doi: 10.1016/j.apsusc.2008.05.199. DOI
Kuriplach J., Melikhova O., Hou M., Van Petegem S., Zhurkin E., Šob M. Positron annihilation at grain boundaries in metals. Phys. Status Solidi C. 2007;4:3461. doi: 10.1002/pssc.200675813. DOI
Černý M., Šesták P., Řehák P., Všianská M., Šob M. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2016;669:218. doi: 10.1016/j.msea.2016.05.083. DOI
Řehák P., Černý M., Šob M. Mechanical stability of Ni and Ir under hydrostatic and uniaxial loading. Model. Simul. Mater. Sci. Eng. 2015;23:055010. doi: 10.1088/0965-0393/23/5/055010. DOI
Xiao W., Liu C.S., Tian Z.X., Geng W.T. Effect of applied stress on vacancy segregation near the grain boundary in nickel. J. Appl. Phys. 2008;104:053519. doi: 10.1063/1.2975939. DOI
Lejček P., Hofmann S., Paidar V. The significance of entropy in grain boundary segregation. Materials. 2019;12:492. doi: 10.3390/ma12030492. PubMed DOI PMC
Editorial for the Special Issue on Computational Quantum Physics and Chemistry of Nanomaterials