• This record comes from PubMed

Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes

. 2019 Feb 14 ; 9 (1) : 2127. [epub] 20190214

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 AI045545 NIAID NIH HHS - United States

Links

PubMed 30765796
PubMed Central PMC6375968
DOI 10.1038/s41598-019-38631-6
PII: 10.1038/s41598-019-38631-6
Knihovny.cz E-resources

Anophelinae mosquitoes are vectors of human malaria, a disease that infects hundreds of millions of people and causes almost 600,000 fatalities annually. Despite their medical importance, laboratory studies on key aspects of Anophelinae reproductive biology have been limited, and in particular, relatively little is known about the role of juvenile hormone (JH) in the control of female reproduction. The study presented here attempts to fill a gap of knowledge in our understanding of the JH control of ovarian development in female Anophelinae mosquitoes, using Anopheles albimanus as a model. Our studies revealed that JH controls the tempo of maturation of primary follicles in An. albimanus in a similar manner to that previously described in Aedes aegypti. At adult eclosion JH hemolymph titer was low, increased in 1-day old sugar-fed insects, and decreased in blood fed individuals. JH titers decreased if An. albimanus females were starved, and were reduced if insects emerged with low teneral reserves, precluding previtellogenic ovarian development. However, absolute hemolymph titers were lower than Ae. aegypti. Decapitation experiments suggested that if teneral reserves are sufficient, factors from the head activate JH synthesis by the corpora allata (CA) during the first 9-12 h after adult emergence. In conclusion, our studies support the hypothesis that JH controls previtellogenic ovarian development in female An. albimanus mosquitoes, in a similar manner that have been described in Culicinae.

See more in PubMed

Zhu, J. & Noriega, F. G. The role of juvenile hormone in mosquito development and reproduction. Adv. Insect Physiol. Progress in Mosquito Research. Editor. Alex Raikhel. 51, 93–113 (2016).

Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J. Med Entomol. 1990;27:839–850. doi: 10.1093/jmedent/27.5.839. PubMed DOI

Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 1990;36:165–172. doi: 10.1016/0022-1910(90)90118-Y. DOI

Clements, A. N. The Biology of Mosquitoes, Volume 1. (Chapman & Hall, 1992).

Clifton ME, Noriega FG. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J. Insect Physiol. 2011;57:1274–1281. doi: 10.1016/j.jinsphys.2011.06.002. PubMed DOI PMC

Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect Physiol. 2012;58:1007–1019. doi: 10.1016/j.jinsphys.2012.05.005. PubMed DOI PMC

Sinka ME, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasites & Vectors. 2010;3:72. doi: 10.1186/1756-3305-3-72. PubMed DOI PMC

Nicholson AJ. The development of the ovary and ovarian egg of a mosquito, Anopheles maculipennis, Meig. Quarterly J. Microscopical Science. 1921;65:395–448.

Shalaby AM. Changes in the ovaries of Anopheles multicolor and Anopheles pharoensis (Diptera: Culicidae) following oviposition. J. App. Entomol. 1971;69:187–197.

Redfern CPF. 20-hydroxy-ecdysone and ovarian development in Anopheles stephensi. J. Ins. Physiol. 1982;28:97–109. doi: 10.1016/0022-1910(82)90117-2. DOI

Lu YH, Hagedorn HH. Egg development in the mosquito Anopheles albimanus. International J. Invertebrate Reproduction. Development. 1986;9:79–94.

Nasci RS. Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae) J. Med. Entomol. 1990;27:716–719. doi: 10.1093/jmedent/27.4.716. PubMed DOI

Hernández-Martínez S, Rivera-Perez C, Nouzova M, Noriega FG. Coordinated changes in JH biosynthesis and JH hemolymph titers in Aedes aegypti mosquitoes. J Insect Physiol. 2015;72:22–27. doi: 10.1016/j.jinsphys.2014.11.003. PubMed DOI PMC

Ramirez CE, et al. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta. 2016;159:371–378. doi: 10.1016/j.talanta.2016.06.041. PubMed DOI PMC

Briegel H. Physiological bases of mosquito ecology. J. Vector Ecol. 2003;28:1–11. PubMed

Timmermann SE, Briegel H. Water depth and larval density affect development and accumulation of reserves in laboratory populations of mosquitoes. Bull. Soc. Vector Ecol. 1993;18:174–187.

Dahl C, Widahl L-E, Nilsson C. Functional analysis of the suspension feeding system in mosquitoes (Diptera: Culicidae) Annals Entomological Soc. America. 1988;81:105–127. doi: 10.1093/aesa/81.1.105. DOI

Washino RK. The physiological ecology of gonotrophic dissociation and related phenomena in mosquitoes. J. Med. Ent. 1977;130:381–388. doi: 10.1093/jmedent/13.4-5.381. PubMed DOI

Briegel H, Rezzonico L. Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae) J. Med. Entomol. 1985;22:612–618. doi: 10.1093/jmedent/22.6.612. PubMed DOI

Briegel H, Hörler E. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae) J. Med. Entomol. 1993;30:975–985. doi: 10.1093/jmedent/30.6.975. PubMed DOI

Zhou G, Pennington JE, Wells MA. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Insect Biochem. Mol. Biol. 2004;34:919–925. doi: 10.1016/j.ibmb.2004.05.009. PubMed DOI

Zhou G, et al. Metabolic fate of [C-14]-labeled meal protein amino acids in Aedes aegypti mosquitoes. J. Insect Physiol. 2004;50:337–349. doi: 10.1016/j.jinsphys.2004.02.003. PubMed DOI

Beckemeyer EF, Lea AO. Induction of follicle separation in the mosquito by physiological amounts of ecdysterone. Science. 1980;209:819–821. doi: 10.1126/science.209.4458.819. PubMed DOI

Klowden MJ. Endocrine aspects of mosquito reproduction. Archives Insect Biochem Physiol. 1997;35:491–512. doi: 10.1002/(SICI)1520-6327(1997)35:4<491::AID-ARCH10>3.0.CO;2-5. DOI

Caroci A, Li Y, Noriega FG. Reduced juvenile hormone synthesis in mosquitoes with low teneral reserves prevents ovarian previtellogenic development in Aedes aegypti. J. Experim. Biol. 2004;207:2685–2690. doi: 10.1242/jeb.01093. PubMed DOI

Lea AO. Some relationships between environment, corpora allata, and egg maturation in aedine mosquitoes. J. Insect Physiol. 1963;9:793–809. doi: 10.1016/0022-1910(63)90039-8. DOI

Gwadz RW, Spielman A. Corpus allatum control of ovarian development in Aedes aegypti. J. Insect Physiol. 1973;19:1441–1448. doi: 10.1016/0022-1910(73)90174-1. PubMed DOI

Hagedorn HH, et al. Post-emergence growth of the ovarian follicles of Aedes aegypti. J. Insect Physiol. 1977;23:203–206. doi: 10.1016/0022-1910(77)90030-0. PubMed DOI

Hernandez-Martinez S, Mayoral JG, Li Y, Noriega FG. Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes. J. Insect Physiol. 2007;53:230–234. doi: 10.1016/j.jinsphys.2006.08.009. PubMed DOI PMC

Fernandes L, Briegel H. Reproductive physiology ofAnopheles gambiae and Anopheles atroparvus. J. Vector Ecol. 2005;30:11–26. PubMed

Nouzova M, Edwards MJ, Mayoral JG, Noriega FG. A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem. Mol. Biol. 2011;41:660–669. doi: 10.1016/j.ibmb.2011.04.008. PubMed DOI PMC

Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology. Insect Biochem. Mol Biol. 2014;51:1–9. doi: 10.1016/j.ibmb.2014.05.001. PubMed DOI PMC

Mack SR, Foley DA, Vanderberg JP. Hemolymph volume of noninfected and Plasmodium berghei-infected Anopheles stephensi. J. Invertebrate Pathol. 1979;34:105–109. doi: 10.1016/0022-2011(79)90088-0. PubMed DOI

Shapiro AB, et al. Juvenile hormone and juvenile hormone esterase in adult females of the mosquito Aedes aegypti. J. Insect Physiol. 1986;32:867–877. doi: 10.1016/0022-1910(86)90102-2. DOI

Li Y, Hernández-Martínez S, Noriega FG. Inhibition of juvenile hormone biosynthesis in mosquitoes: effect of allatostatic head factors, PISCF- and YXFGL-amide-allatostatins. Regulatory Peptides. 2004;118:175–182. doi: 10.1016/j.regpep.2003.12.004. PubMed DOI

Bown DN, et al. Age structure and abundance levels in the entomological evaluation of an insecticide used in the control of Anopheles albimanus in southern Mexico. J. Amer. Mosq. Control Assoc. 1991;7:180–187. PubMed

Mala OA, et al. Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi-arid area in Baringo County, Kenya. International J Mosquito Res. 2014;1:28–34.

Soller M, Bownes M, Kubli E. Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology. 1999;208:337–351. doi: 10.1006/dbio.1999.9210. PubMed DOI

Clements AN, Boocock MR. Ovarian development in mosquitoes stages of growth and arrest and follicular resorption. Physiol Entomol. 1984;9:1–8. doi: 10.1111/j.1365-3032.1984.tb00675.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...