• This record comes from PubMed

Human Embryonic Stem Cells Acquire Responsiveness to TRAIL upon Exposure to Cisplatin

. 2019 ; 2019 () : 4279481. [epub] 20190121

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Tumor necrosis factor-related apoptosis-inducing ligand-TRAIL-is a protein operating as a ligand capable of inducing apoptosis particularly in cancerously transformed cells, while normal healthy cells are typically nonresponsive. We have previously demonstrated that pluripotent human embryonic stem cells (hESC) are also refractory to TRAIL, even though they express all canonical components of the death receptor-induced apoptosis pathway. In this study, we have examined a capacity of DNA damage to provoke sensitivity of hESC to TRAIL. The extent of DNA damage, behavior of molecules involved in apoptosis, and response of hESC to TRAIL were investigated. The exposure of hESC to 1 μM and 2 μM concentrations of cisplatin have led to the formation of 53BP1 and γH2AX foci, indicating the presence of double-strand breaks in DNA, without affecting the expression of proteins contributing to mitochondrial membrane integrity. Interestingly, cisplatin upregulated critical components of the extrinsic apoptotic pathway-initiator caspase 8, effector caspase 3, and the cell death receptors. The observed increase of expression of the extrinsic apoptotic pathway components was sufficient to sensitize hESC to TRAIL-induced apoptosis; immense cell dying accompanied by enhanced PARP cleavage, processing of caspase 8, and full activation of caspase 3 were all observed after the treatment combining cisplatin and TRAIL. Finally, we have demonstrated the central role of caspase 8 in this process, since its downregulation abrogated the sensitizing effect of cisplatin.

See more in PubMed

Alekseenko L. L., Zemelko V. I., Zenin V. V., et al. Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny. Cell Cycle. 2012;11(17):3260–3269. doi: 10.4161/cc.21595. PubMed DOI PMC

Desmarais J. A., Hoffmann M. J., Bingham G., Gagou M. E., Meuth M., Andrews P. W. Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells. 2012;30(7):1385–1393. doi: 10.1002/stem.1117. PubMed DOI

Sumi T., Tsuneyoshi N., Nakatsuji N., Suemori H. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene. 2007;26(38):5564–5576. doi: 10.1038/sj.onc.1210353. PubMed DOI

Momčilović O., Navara C., Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results and Problems in Cell Differentiation. 2011;53:415–458. doi: 10.1007/978-3-642-19065-0_18. PubMed DOI

Dumitru R., Gama V., Fagan B. M., et al. Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Molecular Cell. 2012;46(5):573–583. doi: 10.1016/j.molcel.2012.04.002. PubMed DOI PMC

Madden D. T., Davila-Kruger D., Melov S., Bredesen D. E. Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members. PLoS One. 2011;6(12, article e28530) doi: 10.1371/journal.pone.0028530. PubMed DOI PMC

Liu J. C., Guan X., Ryan J. A., et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell. 2013;13(4):483–491. doi: 10.1016/j.stem.2013.07.018. PubMed DOI PMC

Vinarsky V., Krivanek J., Rankel L., et al. Human embryonic and induced pluripotent stem cells express TRAIL receptors and can be sensitized to TRAIL-induced apoptosis. Stem Cells and Development. 2013;22(22):2964–2974. doi: 10.1089/scd.2013.0057. PubMed DOI PMC

Pitti R. M., Marsters S. A., Ruppert S., Donahue C. J., Moore A., Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. The Journal of Biological Chemistry. 1996;271(22):12687–12690. doi: 10.1074/jbc.271.22.12687. PubMed DOI

Wiley S. R., Schooley K., Smolak P. J., et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673–682. doi: 10.1016/1074-7613(95)90057-8. PubMed DOI

Yagita H., Takeda K., Hayakawa Y., Smyth M. J., Okumura K. TRAIL and its receptors as targets for cancer therapy. Cancer Science. 2004;95(10):777–783. doi: 10.1111/j.1349-7006.2004.tb02181.x. PubMed DOI PMC

Ashkenazi A., Pai R. C., Fong S., et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. The Journal of Clinical Investigation. 1999;104(2):155–162. doi: 10.1172/JCI6926. PubMed DOI PMC

Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. PubMed DOI

Safa A. R. c-FLIP, a master anti-apoptotic regulator. Experimental Oncology. 2012;34(3):176–184. PubMed PMC

The International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology. 2007;25(7):803–816. doi: 10.1038/nbt1318. PubMed DOI

Lowndes N. F., Toh G. W.-L. DNA repair: the importance of phosphorylating histone H2AX. Current Biology. 2005;15(3):R99–R102. doi: 10.1016/j.cub.2005.01.029. PubMed DOI

Panier S., Boulton S. J. Double-strand break repair: 53BP1 comes into focus. Nature Reviews Molecular Cell Biology. 2014;15(1):7–18. doi: 10.1038/nrm3719. PubMed DOI

Horova V., Hradilova N., Jelinkova I., et al. Inhibition of vacuolar ATPase attenuates the TRAIL-induced activation of caspase-8 and modulates the trafficking of TRAIL receptosomes. The FEBS Journal. 2013;280(14):3436–3450. doi: 10.1111/febs.12347. PubMed DOI

Danial N. N., Korsmeyer S. J. Cell death: critical control points. Cell. 2004;116(2):205–219. doi: 10.1016/S0092-8674(04)00046-7. PubMed DOI

Willis S. N., Adams J. M. Life in the balance: how BH3-only proteins induce apoptosis. Current Opinion in Cell Biology. 2005;17(6):617–625. doi: 10.1016/j.ceb.2005.10.001. PubMed DOI PMC

Lin T., Chao C., Saito S.'., et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biology. 2005;7(2):165–171. doi: 10.1038/ncb1211. PubMed DOI

Beranova L., Pombinho A. R., Spegarova J., et al. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18(6):739–750. doi: 10.1007/s10495-013-0823-9. PubMed DOI

von Stechow L., Ruiz-Aracama A., van de Water B., Peijnenburg A., Danen E., Lommen A. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells. PLoS One. 2013;8(10, article e76476) doi: 10.1371/journal.pone.0076476. PubMed DOI PMC

Pines A., Kelstrup C. D., Vrouwe M. G., et al. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. Molecular and Cellular Biology. 2011;31(24):4964–4977. doi: 10.1128/MCB.05258-11. PubMed DOI PMC

Kruse J. J. C. M., Svensson J. P., Huigsloot M., et al. A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2007;617(1-2):58–70. doi: 10.1016/j.mrfmmm.2006.12.004. PubMed DOI

Poth K. J., Guminski A. D., Thomas G. P., Leo P. J., Jabbar I. A., Saunders N. A. Cisplatin treatment induces a transient increase in tumorigenic potential associated with high interleukin-6 expression in head and neck squamous cell carcinoma. Molecular Cancer Therapeutics. 2010;9(8):2430–2439. doi: 10.1158/1535-7163.MCT-10-0258. PubMed DOI

Sekiguchi I., Suzuki M., Tamada T., Shinomiya N., Tsuru S., Murata M. Effects of cisplatin on cell cycle kinetics, morphological change, and cleavage pattern of DNA in two human ovarian carcinoma cell lines. Oncology. 1996;53(1):19–26. doi: 10.1159/000227529. PubMed DOI

Al-Bahlani S., Al-Dhahli B., Al-Adawi K., Al-Nabhani A., Al-Kindi M. Platinum-based drugs differentially affect the ultrastructure of breast cancer cell types. BioMed Research International. 2017;2017:13. doi: 10.1155/2017/3178794.3178794 PubMed DOI PMC

Wilson K. D., Sun N., Huang M., et al. Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells. Cancer Research. 2010;70(13):5539–5548. doi: 10.1158/0008-5472.CAN-09-4238. PubMed DOI PMC

Seol D. W., Li J., Seol M. H., Park S. Y., Talanian R. V., Billiar T. R. Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Research. 2001;61(3):1138–1143. PubMed

Sprick M. R., Rieser E., Stahl H., Grosse-Wilde A., Weigand M. A., Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. The EMBO Journal. 2002;21(17):4520–4530. doi: 10.1093/emboj/cdf441. PubMed DOI PMC

Vondálová Blanářová O., Šafaříková B., Herůdková J., et al. Cisplatin or LA-12 enhance killing effects of TRAIL in prostate cancer cells through Bid-dependent stimulation of mitochondrial apoptotic pathway but not caspase-10. PLoS One. 2017;12(11, article e0188584) doi: 10.1371/journal.pone.0188584. PubMed DOI PMC

Engels I. H., Totzke G., Fischer U., Schulze-Osthoff K., Jänicke R. U. Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Molecular and Cellular Biology. 2005;25(7):2808–2818. doi: 10.1128/MCB.25.7.2808-2818.2005. PubMed DOI PMC

Kischkel F. C., Lawrence D. A., Tinel A., et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. The Journal of Biological Chemistry. 2001;276(49):46639–46646. doi: 10.1074/jbc.M105102200. PubMed DOI

Kendrick J. E., Straughn J. M., Jr, Oliver P. G., et al. Anti-tumor activity of the TRA-8 anti-DR5 antibody in combination with cisplatin in an ex vivo human cervical cancer model. Gynecologic Oncology. 2008;108(3):591–597. doi: 10.1016/j.ygyno.2007.11.039. PubMed DOI

Kondo K., Yamasaki S., Inoue N., et al. Prospective antitumor effects of the combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cisplatin against esophageal squamous cell carcinoma. Surgery Today. 2006;36(11):966–974. doi: 10.1007/s00595-006-3295-5. PubMed DOI

Kondo K., Yamasaki S., Sugie T., et al. Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. International Journal of Cancer. 2006;118(1):230–242. doi: 10.1002/ijc.21283. PubMed DOI

Vondalova Blanarova O., Jelinkova I., Szoor A., et al. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis. 2011;32(1):42–51. doi: 10.1093/carcin/bgq220. PubMed DOI

Ashkenazi A., Herbst R. S. To kill a tumor cell: the potential of proapoptotic receptor agonists. The Journal of Clinical Investigation. 2008;118(6):1979–1990. doi: 10.1172/JCI34359. PubMed DOI PMC

Trivedi R., Mishra D. P. Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Frontiers in Oncology. 2015;5 doi: 10.3389/fonc.2015.00069. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...