Partitioning of mesophyll conductance for CO2 into intercellular and cellular components using carbon isotope composition of cuticles from opposite leaf sides
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30806882
DOI
10.1007/s11120-019-00628-7
PII: 10.1007/s11120-019-00628-7
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 diffusion, Carbon isotope discrimination, Cuticle, Leaf mesophyll, Leaf traits, Mesophyll conductance, Waxes,
- MeSH
- biologické modely MeSH
- extracelulární prostor metabolismus MeSH
- izotopy uhlíku metabolismus MeSH
- listy rostlin anatomie a histologie růst a vývoj metabolismus MeSH
- mezofylové buňky metabolismus MeSH
- nadmořská výška MeSH
- oxid uhličitý metabolismus MeSH
- vosky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- izotopy uhlíku MeSH
- oxid uhličitý MeSH
- vosky MeSH
We suggest a new technique for estimating the relative drawdown of CO2 concentration (c) in the intercellular air space (IAS) across hypostomatous leaves (expressed as the ratio cd/cb, where the indexes d and b denote the adaxial and abaxial edges, respectively, of IAS), based on the carbon isotope composition (δ13C) of leaf cuticular membranes (CMs), cuticular waxes (WXs) or epicuticular waxes (EWXs) isolated from opposite leaf sides. The relative drawdown in the intracellular liquid phase (i.e., the ratio cc/cbd, where cc and cbd stand for mean CO2 concentrations in chloroplasts and in the IAS), the fraction of intercellular resistance in the total mesophyll resistance (rIAS/rm), leaf thickness, and leaf mass per area (LMA) were also assessed. We show in a conceptual model that the upper (adaxial) side of a hypostomatous leaf should be enriched in 13C compared to the lower (abaxial) side. CM, WX, and/or EWX isolated from 40 hypostomatous C3 species were 13C depleted relative to bulk leaf tissue by 2.01-2.85‰. The difference in δ13C between the abaxial and adaxial leaf sides (δ13CAB - 13CAD, Δb-d), ranged from - 2.22 to + 0.71‰ (- 0.09 ± 0.54‰, mean ± SD) in CM and from - 7.95 to 0.89‰ (- 1.17 ± 1.40‰) in WX. In contrast, two tested amphistomatous species showed no significant Δb-d difference in WX. Δb-d correlated negatively with LMA and leaf thickness of hypostomatous leaves, which indicates that the mesophyll air space imposes a non-negligible resistance to CO2 diffusion. δ13C of EWX and 30-C aldehyde in WX reveal a stronger CO2 drawdown than bulk WX or CM. Mean values of cd/cb and cc/cbd were 0.90 ± 0.12 and 0.66 ± 0.11, respectively, across 14 investigated species in which wax was isolated and analyzed. The diffusion resistance of IAS contributed 20 ± 14% to total mesophyll resistance and reflects species-specific and environmentally-induced differences in leaf functional anatomy.
Biology Centre ASCR Institute of Soil Biology Na Sádkách 702 7 37005 Ceske Budejovice Czech Republic
Faculty of Science University of South Bohemia Branišovská 31 37005 Ceske Budejovice Czech Republic
Institute for Cellular and Molecular Botany IZMB University of Bonn Kirschallee 1 53115 Bonn Germany
Zobrazit více v PubMed
Plant Physiol. 2001 Aug;126(4):1725-37 PubMed
Prog Lipid Res. 2003 Jan;42(1):51-80 PubMed
Phytochemistry. 2003 Jun;63(3):361-71 PubMed
Phytochemistry. 2004 May;65(10):1369-81 PubMed
New Phytol. 2006;169(4):641-3 PubMed
New Phytol. 2006;169(4):779-87 PubMed
Plant Physiol. 1982 Mar;69(3):657-9 PubMed
Plant Physiol. 1990 Nov;94(3):1024-32 PubMed
J Exp Bot. 2008;59(7):1475-87 PubMed
Plant Cell Environ. 2008 May;31(5):602-21 PubMed
J Exp Bot. 2009;60(8):2303-14 PubMed
J Exp Bot. 2009;60(8):2217-34 PubMed
J Exp Bot. 2009;60(8):2235-48 PubMed
J Exp Bot. 2009;60(8):2249-70 PubMed
J Exp Bot. 2009;60(8):2315-23 PubMed
Tree Physiol. 2010 May;30(5):618-27 PubMed
Trends Plant Sci. 2010 Oct;15(10):546-53 PubMed
Plant Cell Environ. 2011 Jan;34(1):127-36 PubMed
J Exp Bot. 2011 Jan;62(3):841-53 PubMed
Rapid Commun Mass Spectrom. 2012 Jan 30;26(2):115-22 PubMed
Plant Cell Environ. 2012 Dec;35(12):2087-103 PubMed
Plant Sci. 2012 Sep;193-194:70-84 PubMed
J Exp Bot. 2013 May;64(8):2269-81 PubMed
Plant Physiol. 2013 Sep;163(1):5-20 PubMed
New Phytol. 2013 Dec;200(4):950-65 PubMed
Planta. 1981 Dec;153(4):376-87 PubMed
Plant Cell Environ. 2014 Jun;37(6):1415-26 PubMed
Phytochemistry. 2015 Mar;111:14-20 PubMed
Proc Biol Sci. 2015 Aug 22;282(1813):20151498 PubMed
Oecologia. 1996 Sep;107(4):426-432 PubMed
Plant Cell Environ. 2017 Nov;40(11):2729-2742 PubMed
Glob Chang Biol. 2018 Mar;24(3):1186-1200 PubMed
Oecologia. 2018 Aug;187(4):1053-1075 PubMed