A modified method for enzymatic isolation of and subsequent wax extraction from Arabidopsis thaliana leaf cuticle
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32973915
PubMed Central
PMC7507672
DOI
10.1186/s13007-020-00673-7
PII: 673
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Enzymatic isolation, Fatty acids, Leaf cuticle, Wax,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The plant cuticle represents one of the major adaptations of vascular plants to terrestrial life. Cuticular permeability and chemical composition differ among species. Arabidopsis thaliana is a widely used model for biochemical and molecular genetic studies in plants. However, attempts to isolate the intact cuticle from fresh leaves of Arabidopsis have failed so far. The goal of this study was to optimise an enzymatic method for cuticle isolation of species with a thin cuticle and to test it on several A. thaliana wild types and mutants. RESULTS: We developed a method for isolation of thin cuticles that allows reducing the isolation time, the separation of abaxial and adaxial cuticles, and avoids formation of wrinkles. Optical microscopy was used for studying cuticle intactness and scanning electron microscopy for visualisation of external and internal cuticle structures after isolation. Wax extracts were analysed by GC-MS. Isolation of intact cuticle was successful for all tested plants. The wax compositions (very-long-chained fatty acids, alcohols and alkanes) of intact leaves and isolated cuticles of wild type Col-0 were compared. CONCLUSIONS: We conclude that the optimised enzymatic method is suitable for the isolation of A. thaliana adaxial and abaxial cuticles. The isolated cuticles are suitable for microscopic observation. Analysis of wax composition revealed some discrepancies between isolated cuticles and intact leaves with a higher yield of wax in isolated cuticles.
Zobrazit více v PubMed
Albenne C, Canut H, Jamet E. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. 2013;4:1–17. doi: 10.3389/fpls.2013.00111. PubMed DOI PMC
Aragón W, Reina-Pinto JJ, Serrano M. The intimate talk between plants and microorganisms at the leaf surface. J Exp Bot. 2017;68:5339–5350. doi: 10.1093/jxb/erx327. PubMed DOI
Becker M, Kerstiens G, Schönherr J. Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees. 1986;1:54–60. doi: 10.1007/BF00197025. DOI
Bewick TA, Shilling DG, Querns R. Evaluation of epicuticular wax removal from whole leaves with chloroform. Weed Technol. 1993;7:706–716. doi: 10.1017/S0890037X00037581. DOI
Bourgault R, Matschi S, Vasquez M, Qiao P, Sonntag A, Charlebois C, Mohammadi M, Scanlon MJ, Smith LG, Molina I. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Ann Bot. 2020;125:79–91. doi: 10.1093/aob/mcz143. PubMed DOI PMC
Boyer JS, Chin Wong S, Farquhar GD. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 1997;114:185–191. doi: 10.1104/pp.114.1.185. PubMed DOI PMC
Buschhaus C, Jetter R. Composition and physiological function of the wax layers coating Arabidopsis leaves: β-Amyrin negatively affects the intracuticular water barrier. Plant Physiol. 2012;160:1120–1129. doi: 10.1104/pp.112.198473. PubMed DOI PMC
Chen X, Wang H, Li J, Huang H, Xu L. Quantitative control of ASYMMETRIC LEAVES2 expression is critical for leaf axial patterning in Arabidopsis. J Exp Bot. 2013;64:4895–4905. doi: 10.1093/jxb/ert278. PubMed DOI PMC
Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front Plant Sci. 2016;7:1–14. PubMed PMC
Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L. Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry. 2005;66:2643–2658. doi: 10.1016/j.phytochem.2005.09.027. PubMed DOI
Heredia-Guerrero JA, Heredia A, Domínguez E, Cingolani R, Bayer IS, Athanassiou A, Benítez JJ. Cutin from agro-waste as a raw material for the production of bioplastics. J Exp Bot. 2017;68:5401–5410. doi: 10.1093/jxb/erx272. PubMed DOI
James AT. The biosynthesis of long-chain saturated and unsaturated fatty acids in isolated plant leaves. Biochemica et biophysica acta. 1963;70:9–19. doi: 10.1016/0006-3002(63)90714-5. PubMed DOI
Jeffree CE. The fine structure of the plant cuticle. Annu Plant Rev. 2006;23:11–125.
Jenkin S, Molina I. Isolation and compositional analysis of plant cuticle lipid polyester monomers. J Vis Exp. 2015;2015:1–10. PubMed PMC
Jenks MA, Eigenbrode SD, Lemieux B. Cuticular waxes of Arabidopsis. Arabidopsis Book. 2002;1:e0016. doi: 10.1199/tab.0016. PubMed DOI PMC
Jetter R, Kunst L, Samuels AL. Annual plant reviews. Hoboken: Blacwell Publishing Ltd.; 2006. Composition of plant cuticular waxes.
Jetter R, Riederer M. Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiol. 2016;170:921–934. doi: 10.1104/pp.15.01699. PubMed DOI PMC
Kerstiens G. Cuticular water permeability and its physiological significance. J Exp Bot. 1996;47:1813–1832. doi: 10.1093/jxb/47.12.1813. DOI
Kim H, Yu SI, Jung SH, Lee BH, Suh MC. The F-box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynthesis in response to changes in humidity in Arabidopsis. Plant Cell. 2019;31:2223–2240. doi: 10.1105/tpc.19.00152. PubMed DOI PMC
Kirkwood RC. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci. 1999;55:69–77. doi: 10.1002/(SICI)1096-9063(199901)55:1<69::AID-PS860>3.0.CO;2-H. DOI
Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 2009;151:1918–1929. doi: 10.1104/pp.109.141911. PubMed DOI PMC
Lee SB, Suh MC. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep. 2015;34:557–572. doi: 10.1007/s00299-015-1772-2. PubMed DOI
Lolle SJ, Cheung AY, Sussex IM. Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Dev Biol. 1992;152:382–392. doi: 10.1016/0012-1606(92)90145-7. PubMed DOI
Macková J, Vašková M, Macek P, Hronková M, Schreiber L, Šantrůček J. Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot. 2013;86:70–75. doi: 10.1016/j.envexpbot.2010.06.005. DOI
Nawrath C. Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol. 2006;9:281–287. doi: 10.1016/j.pbi.2006.03.001. PubMed DOI
Nip M, Tegelaar EW, de Leeuw JW, Schenck PA, Holloway PJ. A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften. 1986;73:579–585. doi: 10.1007/BF00368768. DOI
Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 2019;98:727–744. doi: 10.1111/tpj.14269. PubMed DOI
Racovita RC, Jetter R. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: identification of very-long-chain primary amides. Phytochemistry. 2016;130:252–261. doi: 10.1016/j.phytochem.2016.06.005. PubMed DOI
Riederer M, Müller C. Biology of the plant cuticle—annual plant reviews, Hoboken: Blackwell Publishing; 2006.
Šantrůček J, Schreiber L, Macková J, Vráblová M, Květoň J, Macek P, Neuwirthová J. Partitioning of mesophyll conductance for CO2 into intercellular and cellular components using carbon isotope composition of cuticles from opposite leaf sides. Photosynth Res. 2019;141:33–51. doi: 10.1007/s11120-019-00628-7. PubMed DOI
Schönherr J, Baur P. Modelling penetration of plant cuticles by crop protection agents and effects of adjuvants on their rates of penetration. Pestic Sci. 1994;42:185–208. doi: 10.1002/ps.2780420308. DOI
Schönherr J, Riederer M. Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant, Cell Environ. 1986;9:459–466. doi: 10.1111/j.1365-3040.1986.tb01761.x. DOI
Schreiber L, Schönherr J. Water and solute permeability of plant cuticles. Berlin: Springer; 2009.
Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 2004;37:139–146. doi: 10.1046/j.1365-313X.2003.01946.x. PubMed DOI
Tegelaar EW, Wattendorff J, de Leeuw JW. Possible effects of chemical heterogeneity in higher land plant cuticles on the preservation of its ultrastructure upon fossilization. Rev Palaeobot Palynol. 1993;77:149–170. doi: 10.1016/0034-6667(93)90002-C. DOI
Yang M, Sack FD. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell. 1995;7:2227–2239. PubMed PMC
Yeats TH, Rose JKC. The formation and function of plant cuticles. Plant Physiol. 2013;163:5–20. doi: 10.1104/pp.113.222737. PubMed DOI PMC
Zeisler-Diehl V, Müller Y, Schreiber L. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. J Plant Physiol. 2018;227:66–74. doi: 10.1016/j.jplph.2018.03.018. PubMed DOI