Hygrometrically controlled programmed cell death drives anther opening and pollen release

. 2025 May 20 ; 122 (20) : e2420132122. [epub] 20250516

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40377996

Grantová podpora
4222 The Charles University Grant Agency

Anther dehiscence is the process that facilitates pollen release from mature anthers in flowering plants. Despite its crucial importance to reproduction, the underlying developmental mechanism and its integration with environmental cues remain poorly understood. Establishing noninvasive, controlled humidity treatments of Arabidopsis thaliana flowers, we show here that high humidity prevents anthers from opening. Manipulation of stomatal densities alters dehiscence dynamics, suggesting a contribution of controlled transpiration. Furthermore, analyses of subcellular markers revealed the occurrence of a developmentally prepared and environmentally triggered programmed cell death (PCD) process in specific anther tissues, epidermis and endothecium. Notably, genetic inhibition of PCD delays anther dehiscence, whereas precocious PCD induction promotes it. Our data reveal a rapid PCD execution process modulated by ambient humidity as instrumental for timely pollen release in the flowering plant Arabidopsis.

Zobrazit více v PubMed

Keijzer C. J., “Mechanisms of Angiosperm anther dehiscence, a historical review” in Anther and Pollen, Clément C., Pacini E., Audran J.-C., Eds. (Springer, 1999), pp. 55–67, 10.1007/978-3-642-59985-9_6. DOI

Venkatesh C. S., The form, structure and special ways of dehiscence of anthers of Cassia—III, Subgenus Senna. Phytomorphology 7, 253–273 (1957).

Zhao S. Q., Li W. C., Zhang Y., Tidy A. C., Wilson Z. A., Knockdown of Arabidopsis ROOT UVB SENSITIVE4 disrupts anther dehiscence by suppressing secondary thickening in the endothecium. Plant Cell Physiol. 60, 2293–2306 (2019). PubMed

Purkyně J. E., De cellulis antherarum fibrosis nec non de granorum pollinarium formis: commentatio phytotomica (J.D. Grueson, Vratislaviae, 1830).

Keijzer C. J., The processes of anther dehiscence and pollen dispersal: I. The opening mechanism of longitudially dehiscing anthers. New Phytol. 105, 487–498 (1987). PubMed

Wang D. K., Sun G. F., Wang L. F., Zhai S., Cen X. J., A novel mechanism controls anther opening and closing in Paris polyphylla var, Yunnanensis. Chin. Sci. Bull. 54, 244–248 (2009).

Lyu X., et al. , Characterization of watermelon anther and its programmed cell death-associated events during dehiscence under cold stress. Plant Cell Rep. 38, 1551–1561 (2019). PubMed

Sanders P. M., et al. , Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 11, 297–322 (1999).

Xue J. S., et al. , Development of the middle layer in the anther of Arabidopsis. Front. Plant Sci. 12, 1–9 (2021). PubMed PMC

Yi J., et al. , Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 170, 1611–1623 (2016). PubMed PMC

Dawson J., et al. , Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol. 144, 213–222 (1999).

Bonner L. J., Dickinson H. G., Anther dehiscence in Lycopersicon esculentum mill. I. Structural aspects. New Phytol. 113, 97–115 (1989). PubMed

Stadler R., Truernit E., Gahrtz M., Sauer N., The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J. 19, 269–278 (1999). PubMed

Bots M., et al. , Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol. 137, 1049–1056 (2005). PubMed PMC

Matsui T., Omasa K., Horie T., Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann. Bot. 84, 501–506 (1999).

Gradziel T. M., Weinbaum S. A., High relative humidity reduces anther dehiscence in apricot, peach, and almond. HortScience 34, 322–325 (1999).

Yates I. E., Sparks D., Environmental regulation of anther dehiscence and pollen germination in pecan. J. Am. Soc. Hortic. Sci. 118, 699–706 (1993).

Štenc J., et al. , Pollinator visitation closely tracks diurnal patterns in pollen release. Am. J. Bot. 110, 1–11 (2023). PubMed

Bassani M., Pacini E., Franchi G. G., Humidity stress responses in pollen of anemophilous and entomophilous species. Grana 33, 146–150 (1994).

Wei D., et al. , INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genet. 14, e1007695 (2018). PubMed PMC

Acosta I. F., Przybyl M., Jasmonate signaling during Arabidopsis stamen maturation. Plant Cell Physiol. 60, 2648–2659 (2019). PubMed PMC

Sanders P. M., et al. , The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041–1062 (2000). PubMed PMC

Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K., The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191–2209 (2001). PubMed PMC

Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B., Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2, 1201–1224 (1990). PubMed PMC

Wilson Z. A., Song J., Taylor B., Yang C., The final split: The regulation of anther dehiscence. J. Exp. Bot. 62, 1633–1649 (2011). PubMed

Uzair M., et al. , PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol. 182, 962–976 (2020). PubMed PMC

Li N., et al. , The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999–3014 (2006). PubMed PMC

Kim O. K., Jung J. H., Park C. M., An Arabidopsis F-box protein regulates tapetum degeneration and pollen maturation during anther development. Planta 232, 353–366 (2010). PubMed

Béais T. P., Goldberg R. B., A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9, 1527–1545 (1997). PubMed PMC

Vráblová M., Vrábl D., Sokolová B., Marková D., Hronková M., A modified method for enzymatic isolation of and subsequent wax extraction from Arabidopsis thaliana leaf cuticle. Plant Methods 16, 129 (2020). PubMed PMC

Vráblová M., Vrábl D., Hronková M., Kubásek J., Šantrůček J., Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1 and sdd1-1 mutants. Plant Biol. 19, 689–701 (2017). PubMed

Hsu P. K., Dubeaux G., Takahashi Y., Schroeder J. I., Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 105, 307–321 (2021). PubMed PMC

Ingouff M., et al. , Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 31, 72–83 (2017). PubMed PMC

Cutler S. R., Ehrhardt D. W., Griffitts J. S., Somerville C. R., Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. U.S.A. 97, 3718–3723 (2000). PubMed PMC

Geldner N., et al. , Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–178 (2009). PubMed PMC

Fendrych M., et al. , Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in arabidopsis. Curr. Biol. 24, 931–940 (2014). PubMed

Wang J., et al. , A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap. Plant Cell 36, 941–962 (2024). PubMed PMC

Olvera-Carrillo Y., et al. , A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 169, 2684–2699 (2015). PubMed PMC

Van Durme M., et al. , Fertility loss in senescing Arabidopsis ovules is controlled by the maternal sporophyte via a NAC transcription factor triad. Proc. Natl. Acad. Sci. U. S. A. 120 (2023). PubMed PMC

Gao Z., et al. , KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nat. plants 4, 365–375 (2018). PubMed PMC

Nelson M. R., et al. , A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytol. 196, 1030–1037 (2012). PubMed PMC

Dobritzsch S., et al. , Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol. 13, 1–18 (2015). PubMed PMC

Sanders P. M., Bui A. Q., Le B. H., Goldberg R. B., Differentiation and degeneration of cells that play a major role in tobacco anther dehiscence. Sex. Plant Reprod. 17, 219–241 (2005).

Varnier A. L., Mazeyrat-Gourbeyre F., Sangwan R. S., Clément C., Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J. Struct. Biol. 152, 118–128 (2005). PubMed

Papini A., Mosti S., Brighigna L., Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207, 213–221 (1999).

Dumais J., Forterre Y., Vegetable dynamicks: The role of water in plant movements. Annu. Rev. Fluid Mech. 44, 453–478 (2011).

von Wangenheim D., et al. , Live tracking of moving samples in confocal microscopy for vertically grown roots. Elife 6, e26792 (2017). PubMed PMC

Postma M., Goedhart J., Plotsofdata—A web app for visualizing data together with their summaries. PLoS Biol. 17, e3000202 (2019). PubMed PMC

R Core Team, R: A Language and Environment for Statistical Computing (Version 4.3.2, R Foundation for Statistical Computing, 2023). https://www.r-project.org/.

Vosolsobě S., Analysis code for “Hygrometrically controlled programmed cell death drives anther opening and pollen release.” GitHub. https://github.com/vosolsob/anthers. Deposited 27 April 2024. PubMed PMC

Wood S. N., Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).

Schindelin J., et al. , Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Harrington B., Inkscape. http://www.inkscape.org/. Accessed 2 March 2025.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...