Ectosymbionts alter spontaneous responses to the Earth's magnetic field in a crustacean
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30816116
PubMed Central
PMC6395607
DOI
10.1038/s41598-018-38404-7
PII: 10.1038/s41598-018-38404-7
Knihovny.cz E-zdroje
- MeSH
- kroužkovci fyziologie MeSH
- magnetické pole MeSH
- severní raci fyziologie MeSH
- symbióza fyziologie MeSH
- Země (planeta) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.
Department of Biological Sciences Virginia Tech Blacksburg VA 24061 USA
Department of Biology Appalachian State University Boone NC 28608 USA
Department of Biology Lund University Lund SE 221 00 Sweden
School of Forest Resources and Conservation University of Florida Gainesville Florida 32603 USA
Zobrazit více v PubMed
Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol. 2010;213:3247–3255. doi: 10.1242/jeb.020792. PubMed DOI
Wiltschko, R. & Wiltschko, W. In Sensing in Nature (ed. Carlos López-Larrea) 126–141 (Springer US, 2012).
Phillips JB, Jorge PE, Muheim R. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface. 2010;7(Suppl 2):S241–256. doi: 10.1098/rsif.2009.0459.focus. PubMed DOI PMC
Begall S, Malkemper EP, Červený J, Němec P, Burda H. Magnetic alignment in mammals and other animals. Mamm Biol. 2013;78:10–20. doi: 10.1016/j.mambio.2012.05.005. DOI
Lohmann KJ, Lohmann CMF, Putman NF. Magnetic maps in animals: nature’s GPS. J Exp Biol. 2007;210:3697–3705. doi: 10.1242/jeb.001313. PubMed DOI
Cain S, Boles L, Wang J, Lohmann K. Magnetic orientation and navigation in marine turtles, lobsters, and molluscs: concepts and conundrums. Integr Comp Biol. 2005;45:539. doi: 10.1093/icb/45.3.539. PubMed DOI
Raveh A, Kotler BP, Abramsky Z, Krasnov BR. Driven to distraction: detecting the hidden costs of flea parasitism through foraging behaviour in gerbils. Ecol Lett. 2011;14:47–51. doi: 10.1111/j.1461-0248.2010.01549.x. PubMed DOI
Hughes, D. P., Brodeur, J. & Thomas, F. Host manipulation by parasites. (Oxford University Press, 2012).
Collett TS, Baron J. Biological compasses and the coordinate frame of landmark memories in honeybees. Nature. 1994;368:137–140. doi: 10.1038/368137a0. DOI
Frier H, Edwards E, Smith C, Neale S, Collett T. Magnetic compass cues and visual pattern learning in honeybees. J Exp Biol. 1996;199:1353–1361. PubMed
Phillips JB, Borland SC, Freake MJ, Brassart J, Kirschvink JL. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol. 2002;205:3903–3914. PubMed
Malkemper EP, Painter MS. & Landler, L. Shifted magnetic alignment in vertebrates: evidence for neural lateralization? J Theor Biol. 2016;399:141–147. doi: 10.1016/j.jtbi.2016.03.040. PubMed DOI
Muheim R, Edgar NM, Sloan KA, Phillips JB. Magnetic compass orientation in C57BL/6J mice. Learn Behav. 2006;34:366–373. doi: 10.3758/BF03193201. PubMed DOI
Muheim, R., Sjöberg, S. & Pinzon-Rodriguez, A. Polarized light modulates light-dependent magnetic compass orientation in birds. Proc Natl Acad Sci, 201513391 (2016). PubMed PMC
Phillips, J. B. et al. Rapid learning of magnetic compass direction by C57BL/6 mice in a “plus” water maze. PLoS One (2013). PubMed PMC
Grutter AS. Cleaner fish really do clean. Nature. 1999;398:672. doi: 10.1038/19443. DOI
Cheney KL, Côté IM. The ultimate effect of being cleaned: does ectoparasite removal have reproductive consequences for damselfish clients? Behav Ecol. 2003;14:892–896. doi: 10.1093/beheco/arg079. DOI
Limbaugh C, Pederson H, Chace FA. Shrimps that clean fishes. Bull Mar Sci. 1961;11:237–257.
Clague G, Newport C, Grutter A. Intraspecific cleaning behaviour of adult cleaner wrasse, Labroides dimidiatus (Perciformes: Labridae) Marine Biodiversity Records. 2011;4:e56. doi: 10.1017/S175526721100056X. DOI
Ponton F, et al. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behav Ecol. 2011;22:392–400. doi: 10.1093/beheco/arq215. PubMed DOI PMC
Berdoy M, Webster JP, Macdonald D. Fatal attraction in rats infected with Toxoplasma gondii. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2000;267:1591–1594. PubMed PMC
Skelton J, et al. Servants, scoundrels, and hitchhikers: current understanding of the complex interactions between crayfish and their ectosymbiotic worms (Branchiobdellida) Freshwater Science. 2013;32:1345–1357. doi: 10.1899/12-198.1. DOI
Skelton J, Creed RP, Brown BL. Ontogenetic shift in host tolerance controls initiation of a cleaning symbiosis. Oikos. 2014;123:677–686. doi: 10.1111/j.1600-0706.2013.00963.x. DOI
Brown BL, Creed RP, Dobson WE. Branchiobdellid annelids and their crayfish hosts: are they engaged in a cleaning symbiosis? Oecologia. 2002;132:250–255. doi: 10.1007/s00442-002-0961-1. PubMed DOI
Lee JH, Kim TW, Choe JC. Commensalism or mutualism: conditional outcomes in a branchiobdellid–crayfish symbiosis. Oecologia. 2009;159:217–224. doi: 10.1007/s00442-008-1195-7. PubMed DOI
Brown BL, Creed RP, Skelton J, Rollins MA, Farrell KJ. The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments. Oecologia. 2012;170:199–207. doi: 10.1007/s00442-012-2280-5. PubMed DOI
Farrell KJ, Creed RP, Brown BL. Preventing overexploitation in a mutualism: partner regulation in the crayfish–branchiobdellid symbiosis. Oecologia. 2014;174:501–510. doi: 10.1007/s00442-013-2780-y. PubMed DOI
Ferguson DE, Landreth HF. Celestial orientation of Fowler’s toad Bufo fowleri. Behaviour. 1966;26:105–123. doi: 10.1163/156853966X00047. DOI
Landler L, et al. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle (Chelydra serpentina) Environ Pollut. 2017;228:19–25. doi: 10.1016/j.envpol.2017.04.050. PubMed DOI
Landler L, Painter MS, Youmans PW, Hopkins WA, Phillips JB. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS One. 2015;10:e0124728. doi: 10.1371/journal.pone.0124728. PubMed DOI PMC
Rubens SM. Cube-surface coil for producing a uniform magnetic field. Rev Sci Instrum. 1945;16:243. doi: 10.1063/1.1770378. DOI
Wiltschko, R. et al. Magnetoreception in birds: the effect of radio-frequency fields. J R Soc Interface12, 10.1098/rsif.2014.1103 (2015). PubMed PMC
Engels S, et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature. 2014;509:353–356. doi: 10.1038/nature13290. PubMed DOI
Oriana – Circular Statistics for Windows (Kovach Computing Services, Pentraeth, Wales, U.K, 2011).
Batschelet, E. Circular statistics in biology. (Academic Press, 1981).
Červený J, Begall S, Koubek P, Nováková P, Burda H. Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett. 2011;7:355–357. doi: 10.1098/rsbl.2010.1145. PubMed DOI PMC
Diego-Rasilla FJ, Pérez-Mellado V, Pérez-Cembranos A. Spontaneous magnetic alignment behaviour in free-living lizards. The Science of Nature. 2017;104:13. doi: 10.1007/s00114-017-1439-7. PubMed DOI
Hart V, et al. Magnetic alignment in carps: evidence from the Czech christmas fish market. PLOS ONE. 2012;7:e51100. doi: 10.1371/journal.pone.0051100. PubMed DOI PMC
Hart V, et al. Directional compass preference for landing in water birds. Front Zool. 2013;10:38. doi: 10.1186/1742-9994-10-38. PubMed DOI PMC
Hart V, et al. Dogs are sensitive to small variations of the Earth’s magnetic field. Front Zool. 2013;10:80. doi: 10.1186/1742-9994-10-80. PubMed DOI PMC
Begall, S. et al. Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J Comp Physiol A Sens Neural Behav Physiol, 1–7, 10.1007/s00359-011-0674-1 (2011). PubMed PMC
Begall S, Červený J, Neef J, Vojtěch O, Burda H. Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci. 2008;105:13451–13455. doi: 10.1073/pnas.0803650105. PubMed DOI PMC
O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109. doi: 10.1016/0014-4886(76)90055-8. PubMed DOI
Painter MS, Dommer DH, Altizer WW, Muheim R, Phillips JB. Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. J Exp Biol. 2013;216:1307–1316. doi: 10.1242/jeb.077404. PubMed DOI
Vácha M, Kvicalova M, Puzova T. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour. 2010;147:425–440. doi: 10.1163/000579509X12580965484148. DOI
Becker G. Zur Magnetfeld-Orientierung von Dipteren. J Comp Physiol A Sens Neural Behav Physiol. 1965;51:135–150.
Becker G. Reaktion von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Zeitschrift für angewandte Entomologie. 1964;54:75–88. doi: 10.1111/j.1439-0418.1964.tb02917.x. DOI
Becker G. Resting position according to magnetic direction, magnetic orientation in termites. Naturwissenschaften. 1963;50:455. doi: 10.1007/BF00601615. DOI
Reynolds AM, Frye MA. Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One. 2007;2:e354. doi: 10.1371/journal.pone.0000354. PubMed DOI PMC
Bell WJ, Cathy T, Roggero RJ, Kipp LR, Tobin TR. Sucrose-stimulated searching behaviour of Drosophila melanogaster in a uniform habitat: modulation by period of deprivation. Anim Behav. 1985;33:436–448. doi: 10.1016/S0003-3472(85)80068-3. DOI
Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol. 2007;210:3763–3770. doi: 10.1242/jeb.009563. PubMed DOI
Viswanathan GM, et al. Optimizing the success of random searches. Nature. 1999;401:911–914. doi: 10.1038/44831. PubMed DOI
Chow DM, Frye MA. The neuro-ecology of resource localization in Drosophila: behavioral components of perception and search. Fly. 2009;3:50–61. doi: 10.4161/fly.3.1.7775. PubMed DOI
Franks NR, Fletcher CR. Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama. Behav Ecol Sociobiol. 1983;12:261–270. doi: 10.1007/BF00302894. DOI
Koepp SJ. Effects of host ecdysis on population structure of the epizootic branchiobdellid Cambarincola vitrea. Science of Biology Journal. 1975;1:39–42.
Skelton, J., Creed, R. P. & Brown, B. L. In Proc. R. Soc. B. 20152081 (The Royal Society).
Creed RP, Brown BL. Multiple mechanisms can stabilize a freshwater mutualism. Freshwater Science. 2018;37:000–000. doi: 10.1086/700560. DOI
Creed RP, Lomonaco JD, Thomas MJ, Meeks A, Brown BL. Reproductive dependence of a branchiobdellidan annelid on its crayfish host: confirmation of a mutualism. Crustaceana. 2015;88:385–396. doi: 10.1163/15685403-00003418. DOI
Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A Sens Neural Behav Physiol. 2005;191:675–693. doi: 10.1007/s00359-005-0627-7. PubMed DOI