Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30825313
PubMed Central
PMC6542334
DOI
10.1093/toxsci/kfz057
PII: 5368498
Knihovny.cz E-zdroje
- Klíčová slova
- in vitro alternatives, round-robin study, validation,
- MeSH
- aniliny toxicita MeSH
- buněčné linie MeSH
- laboratoře MeSH
- Oncorhynchus mykiss MeSH
- reprodukovatelnost výsledků MeSH
- testy akutní toxicity metody MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3,4-dichloroaniline MeSH Prohlížeč
- aniliny MeSH
Predicting fish acute toxicity of chemicals in vitro is an attractive alternative method to the conventional approach using juvenile and adult fish. The rainbow trout (Oncorhynchus mykiss) cell line assay with RTgill-W1 cells has been designed for this purpose. It quantifies cell viability using fluorescent measurements for metabolic activity, cell- and lysosomal-membrane integrity on the same set of cells. Results from over 70 organic chemicals attest to the high predictive capacity of this test. We here report on the repeatability (intralaboratory variability) and reproducibility (interlaboratory variability) of the RTgill-W1 cell line assay in a round-robin study focusing on 6 test chemicals involving 6 laboratories from the industrial and academic sector. All participating laboratories were able to establish the assay according to preset quality criteria even though, apart from the lead laboratory, none had previously worked with the RTgill-W1 cell line. Concentration-response modeling, based on either nominal or geometric mean-derived measured concentrations, yielded effect concentrations (EC50) that spanned approximately 4 orders of magnitude over the chemical range, covering all fish acute toxicity categories. Coefficients of variation for intralaboratory and interlaboratory variability for the average of the 3 fluorescent cell viability measurements were 15.5% and 30.8%, respectively, which is comparable to other fish-derived, small-scale bioassays. This study therefore underlines the robustness of the RTgill-W1 cell line assay and its accurate performance when carried out by operators in different laboratory settings.
EPF Lausanne School of Architecture Civil and Environmental Engineering 1015 Lausanne Switzerland
ETH Zürich Institute of Biogeochemistry and Pollutant Dynamics 8093 Zürich Switzerland
Givaudan Schweiz AG Department of In vitro Molecular Screening 8310 Kemptthal Switzerland
Norwegian Institute for Water Research Section for ecotoxicology 0349 Oslo Norway
RECETOX Faculty of Science Masaryk University 625 00 Brno Bohunice Czech Republic
The Procter and Gamble Company Global Product Stewardship Mason Ohio 45040 USA
Zobrazit více v PubMed
Armitage J. M., Wania F., Arnot J. A. (2014). Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ. Sci. Technol. 48, 9770–9779. PubMed
Belanger S. E., Rawlings J. M., Carr G. J. (2013). Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ. Toxicol. Chem. 32, 1768–1783. PubMed
Bols N. C., Barlian A., Chirino-Trejo M., Caldwell S. J., Goegan P., Lee L. E. J. (1994). Development of a cell-line from primary cultures of rainbow-trout, Oncorhyrnchus mykiss (Walbaum), gills. J. Fish Dis. 17, 601–611.
Busquet F., Strecker R., Rawlings J. M., Belanger S. E., Braunbeck T., Carr G. J., Cenijn P., Fochtman P., Gourmelon A., Hübler N., et al. (2014). OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul. Toxicol. Pharmacol. 69, 496–511. PubMed
CEFIC-LRI. Available at: http://cefic-lri.org/projects/eco8-development-of-a-strategy-to-predict-acute-fish-lethality-using-fish-cell-lines-and-fish-embryos/ Accessed March 14, 2019.
Dayeh V. R., Bols N. C., Tanneberger K., Schirmer K., Lee L. E. J. (2013). The use of fish-derived cell lines for investigation of environmental contaminants: An update following OECD’s fish toxicity testing framework No. 171. Curr. Protoc. Toxicol. 1.5.1–1.5.20. doi:10.1002/0471140856.tx0105s56 PubMed
ENV/JM/MONO(2012)16—Fish toxicity testing framework. Series on Testing and Assessent Number 171 (2012).
ENV/JM/MONO(2001)8—OECD Series On Testing And Assessment Number 27 (2001). Guidance document on the use of the harmonized system for the classification of chemicals which are hazardous for the aquatic environment.
Groothuis F. A., Heringa M. B., Nicol B., Hermens J. L. M., Blaauboer B. J., Kramer N. I. (2015). Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 332, 30–40. PubMed
Gülden M., Seibert H. (2005). Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Aquat. Toxicol. 72, 327–337. PubMed
International Standardization Organization (ISO) (2007). Water quality – Determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio). ISO 15088:2007. (E).
Knöbel M., Busser F. J. M., Rico-Rico A., Kramer N. I., Hermens J. L. M., Hafner C., Tanneberger K., Schirmer K., Scholz S. (2012). Predicting adult fish acute lethality with the zebrafish embryo: Relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ. Sci. Technol. 46, 9690–9700. PubMed
Lammer E., Carr G. J., Wendler K., Rawlings J. M., Belanger S. E., Braunbeck T. (2009). Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 149, 196–209. PubMed
Nagel R. (2002). DarT: The embryo test with the Zebrafish Danio rerio–A general model in ecotoxicology and toxicology. ALTEX 19(Suppl. 1), 38–48. PubMed
Natsch A., Laue H., Haupt T., von Niederhäusern V., Sanders G. (2018). Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay. Environ. Toxicol. Chem. 37, 931–941. PubMed
Nichols J., Fay K., Bernhard M. J., Bischof I., Davis J., Halder M., Hu J., Johanning K., Laue H., Nabb D., et al. (2018). Reliability of in vitro methods used to measure intrinsic clearance of hydrophobic organic chemicals by rainbow trout: Results of an international ring trial. Toxicol. Sci. 164, 563–575. PubMed PMC
Organisation for Economic Co-operation and Development (1992). OECD Guideline for Testing of Chemicals. Test No. 203: Acute fish test. OECD, Paris, France.
Organisation for Economic Co-operation and Development (2004). OECD Guidelines for Testing of Chemicals. Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD, Paris, France.
Organisation for Economic Co-operation and Development (2011). OECD Guidelines for Testing of Chemicals. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD, Paris, France.
Organisation for Economic Co-operation and Development (2013). OECD Guidelines for Testing of Chemicals. Test No. 236: Fish embryo acute toxicity (FET) test. OECD, Paris, France.
Raue A., Kreutz C., Maiwald T., Bachmann J., Schilling M., Klingmüller U., Timmer J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 1923–1929. PubMed
Russom C. L., Bradbury S. P., Broderius S. J., Hammermeister D. E., Drummond R. A. (1997). Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 16, 948–967. PubMed
Schirmer K., Tanneberger K., Kramer N. I., Völker D., Scholz S., Hafner C., Lee L. E. J., Bols N. C., Hermens J. L. M. (2008). Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquat. Toxicol. 90, 128–137. PubMed
Schirmer K., Chan A. G. J., Bols N. C. (2000). Transitory metabolic disruption and cytotoxicity elicited by benzo[a]pyrene in two cell lines from rainbow trout liver. J. Biochem. Mol. Toxicol. 14, 262–276. PubMed
Schirmer K., Dixon D. G., Greenberg B. M., Bols N. C. (1998). Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127, 129–141. PubMed
Schirmer K., Chan A. G. J., Greenberg B. M., Dixon D. G., Bols N. C. (1997). Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol. in Vitro 11, 107–119. PubMed
Stadnicka-Michalak J., Weiss F. T., Fischer M., Tanneberger K., Schirmer K. (2018a). Biotransformation of benzo[a]pyrene by three rainbow trout (Onchorhynchus mykiss) cell lines and extrapolation to derive a fish bioconcentration factor. Environ. Sci. Techol. 52, 3091–3100. PubMed
Stadnicka-Michalak J., Knöbel M., Županič A., Schirmer K. (2018b). A validated algorithm for selecting non-toxic chemical concentrations. ALTEX 35, 37–50. PubMed
Stadnicka J., Tanneberger K., Schirmer K., Ashauer R. (2014). Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation. PLoS One 9, e92303.. PubMed PMC
Tanneberger K., Knoebel M., Busser F. J. M., Sinnige T. L., Hermens J. L. M., Schirmer K. (2013). Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ. Sci. Technol. 47, 1110–1119. PubMed
Tanneberger K., Rico-Rico A., Kramer N. I., Busser F. J. M., Hermens J. L. M., Schirmer K. (2010). Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays. Environ. Sci. Technol. 44, 4775–4781. PubMed
Utox-github: https://github.com/UtoxEawag/RTgillRoundRobin. Accessed March 14, 2019.