Spatial and Spectral Mapping and Decomposition of Neural Dynamics and Organization of the Mouse Brain with Multispectral Optoacoustic Tomography
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30840901
PubMed Central
PMC6403416
DOI
10.1016/j.celrep.2019.02.020
PII: S2211-1247(19)30182-2
Knihovny.cz E-zdroje
- Klíčová slova
- hemodynamic response, label-free interrogation, near-infrared neuroimaging, photoacoustic imaging, temporal coherence, whole-brain tomography,
- MeSH
- mozek diagnostické zobrazování patologie MeSH
- myši MeSH
- optoakustické techniky metody MeSH
- Tarsiidae MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In traditional optical imaging, limited light penetration constrains high-resolution interrogation to tissue surfaces. Optoacoustic imaging combines the superb contrast of optical imaging with deep penetration of ultrasound, enabling a range of new applications. We used multispectral optoacoustic tomography (MSOT) for functional and structural neuroimaging in mice at resolution, depth, and specificity unattainable by other neuroimaging modalities. Based on multispectral readouts, we computed hemoglobin gradient and oxygen saturation changes related to processing of somatosensory signals in different structures along the entire subcortical-cortical axis. Using temporal correlation analysis and seed-based maps, we reveal the connectivity between cortical, thalamic, and sub-thalamic formations. With the same modality, high-resolution structural tomography of intact mouse brain was achieved based on endogenous contrasts, demonstrating near-perfect matches with anatomical features revealed by histology. These results extend the limits of noninvasive observations beyond the reach of standard high-resolution neuroimaging, verifying the suitability of MSOT for small-animal studies.
Zobrazit více v PubMed
Alonso B.d.C., Lowe A.S., Dear J.P., Lee K.C., Williams S.C., Finnerty G.T. Sensory inputs from whisking movements modify cortical whisker maps visualized with functional magnetic resonance imaging. Cereb. Cortex. 2008;18:1314–1325. PubMed PMC
Barden H., Levine S. Histochemical observations on rodent brain melanin. Brain Res. Bull. 1983;10:847–851. PubMed
Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1:602–631. PubMed PMC
Berger T., Borgdorff A., Crochet S., Neubauer F.B., Lefort S., Fauvet B., Ferezou I., Carleton A., Lüscher H.R., Petersen C.C. Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J. Neurophysiol. 2007;97:3751–3762. PubMed
Boas D.A., Dale A.M., Franceschini M.A. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage. 2004;23(Suppl 1):S275–S288. PubMed
Brecht M., Sakmann B. Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J. Physiol. 2002;538:495–515. PubMed PMC
Brecht M., Krauss A., Muhammad S., Sinai-Esfahani L., Bellanca S., Margrie T.W. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 2004;479:360–373. PubMed
Bruno R.M., Sakmann B. Cortex is driven by weak but synchronously active thalamocortical synapses. Science. 2006;312:1622–1627. PubMed
Burton N.C., Patel M., Morscher S., Driessen W.H., Claussen J., Beziere N., Jetzfellner T., Taruttis A., Razansky D., Bednar B., Ntziachristos V. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage. 2013;65:522–528. PubMed
Chen X., Leischner U., Rochefort N.L., Nelken I., Konnerth A. Functional mapping of single spines in cortical neurons in vivo. Nature. 2011;475:501–505. PubMed
Culver J.P., Durduran T., Furuya D., Cheung C., Greenberg J.H., Yodh A.G. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J. Cereb. Blood Flow Metab. 2003;23:911–924. PubMed
Dean-Ben X.L., Ntziachristos V., Razansky D. Acceleration of optoacoustic model-based reconstruction using angular image discretization. IEEE Trans. Med. Imaging. 2012;31:1154–1162. PubMed
Denic A., Macura S.I., Mishra P., Gamez J.D., Rodriguez M., Pirko I. MRI in rodent models of brain disorders. Neurotherapeutics. 2011;8:3–18. PubMed PMC
Dombeck D.A., Harvey C.D., Tian L., Looger L.L., Tank D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 2010;13:1433–1440. PubMed PMC
Eggebrecht A.T., Ferradal S.L., Robichaux-Viehoever A., Hassanpour M.S., Dehghani H., Snyder A.Z., Hershey T., Culver J.P. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photonics. 2014;8:448–454. PubMed PMC
Errico C., Pierre J., Pezet S., Desailly Y., Lenkei Z., Couture O., Tanter M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502. PubMed
Farahani K., Sinha U., Sinha S., Chiu L.C., Lufkin R.B. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput. Med. Imaging Graph. 1990;14:409–413. PubMed
Feldmeyer D., Egger V., Lubke J., Sakmann B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J. Physiol. 1999;521:169–190. PubMed PMC
Feldmeyer D., Brecht M., Helmchen F., Petersen C.C., Poulet J.F., Staiger J.F., Luhmann H.J., Schwarz C. Barrel cortex function. Prog. Neurobiol. 2013;103:3–27. PubMed
Franklin K.B.J., Paxinos G. Elsevier; 2008. The Mouse Brain in Stereotaxic Coordinates.
Gesnik M., Blaize K., Deffieux T., Gennisson J.L., Sahel J.A., Fink M., Picaud S., Tanter M. 3D functional ultrasound imaging of the cerebral visual system in rodents. Neuroimage. 2017;149:267–274. PubMed PMC
Gottschalk S., Fehm T.F., Deán-Ben X.L., Tsytsarev V., Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics. 2017;4:011007. PubMed PMC
Grienberger C., Chen X., Konnerth A. NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron. 2014;81:1274–1281. PubMed
Grinvald A., Lieke E., Frostig R.D., Gilbert C.D., Wiesel T.N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 1986;324:361–364. PubMed
Helmchen F., Denk W. Deep tissue two-photon microscopy. Nat. Methods. 2005;2:932–940. PubMed
Hillman E.M. Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt. 2007;12:051402. PubMed PMC
Hong G., Diao S., Chang J., Antaris A.L., Chen C., Zhang B., Zhao S., Atochin D.N., Huang P.L., Andreasson K.I. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics. 2014;8:723–730. PubMed PMC
Hoyer C., Gass N., Weber-Fahr W., Sartorius A. Advantages and challenges of small animal magnetic resonance imaging as a translational tool. Neuropsychobiology. 2014;69:187–201. PubMed
Jacques S.L. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013;58:R37–R61. PubMed
Jonckers E., Shah D., Hamaide J., Verhoye M., Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front. Pharmacol. 2015;6:231. PubMed PMC
Kerr J.N., Denk W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 2008;9:195–205. PubMed
Laufer J., Zhang E., Raivich G., Beard P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 2009;48:D299–D306. PubMed
Li L., Zhu L., Ma C., Lin L., Yao J., Wang L., Maslov K., Zhang R., Chen W., Shi J., Wang L.V. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 2017;1:0071. PubMed PMC
Liao L.D., Lin C.T., Shih Y.Y., Duong T.Q., Lai H.Y., Wang P.H., Wu R., Tsang S., Chang J.Y., Li M.L., Chen Y.Y. Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. J. Cereb. Blood Flow Metab. 2012;32:938–951. PubMed PMC
Lin L., Xia J., Wong T.T., Li L., Wang L.V. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J. Biomed. Opt. 2015;20:016019. PubMed PMC
Logothetis N.K. What we can do and what we cannot do with fMRI. Nature. 2008;453:869–878. PubMed
Macé E., Montaldo G., Cohen I., Baulac M., Fink M., Tanter M. Functional ultrasound imaging of the brain. Nat. Methods. 2011;8:662–664. PubMed
Mirabella G., Battiston S., Diamond M.E. Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb. Cortex. 2001;11:164–170. PubMed
Nasiriavanaki M., Xia J., Wan H., Bauer A.Q., Culver J.P., Wang L.V. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA. 2014;111:21–26. PubMed PMC
Nishimura N., Schaffer C.B., Friedman B., Lyden P.D., Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. USA. 2007;104:365–370. PubMed PMC
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods. 2010;7:603–614. PubMed
Ntziachristos V., Ripoll J., Wang L.V., Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005;23:313–320. PubMed
Olefir I., Mercep E., Burton N.C., Ovsepian S.V., Ntziachristos V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J. Biomed. Opt. 2016;21:86005. PubMed
Osmanski B.F., Pezet S., Ricobaraza A., Lenkei Z., Tanter M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat. Commun. 2014;5:5023. PubMed PMC
Ouzounov D.G., Wang T., Wang M., Feng D.D., Horton N.G., Cruz-Hernández J.C., Cheng Y.T., Reimer J., Tolias A.S., Nishimura N., Xu C. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods. 2017;14:388–390. PubMed PMC
Ovsepian S.V., Olefir I., Westmeyer G., Razansky D., Ntziachristos V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96:966–988. PubMed
Perron A., Mutoh H., Launey T., Knöpfel T. Red-shifted voltage-sensitive fluorescent proteins. Chem. Biol. 2009;16:1268–1277. PubMed PMC
Peterka D.S., Takahashi H., Yuste R. Imaging voltage in neurons. Neuron. 2011;69:9–21. PubMed PMC
Petersen C.C. The functional organization of the barrel cortex. Neuron. 2007;56:339–355. PubMed
Petersen R.S., Panzeri S., Diamond M.E. Population coding of stimulus location in rat somatosensory cortex. Neuron. 2001;32:503–514. PubMed
Petersen C.C., Grinvald A., Sakmann B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 2003;23:1298–1309. PubMed PMC
Razansky D., Buehler A., Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 2011;6:1121–1129. PubMed
Saper C.B., Petito C.K. Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups. Brain. 1982;105:87–101. PubMed
Schaffer C.B., Friedman B., Nishimura N., Schroeder L.F., Tsai P.S., Ebner F.F., Lyden P.D., Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol. 2006;4:e22. PubMed PMC
Schubert D., Kötter R., Zilles K., Luhmann H.J., Staiger J.F. Cell type-specific circuits of cortical layer IV spiny neurons. J. Neurosci. 2003;23:2961–2970. PubMed PMC
Siegel A., Marota J.J., Boas D. Design and evaluation of a continuous-wave diffuse optical tomography system. Opt. Express. 1999;4:287–298. PubMed
Stein E.W., Maslov K., Wang L.V. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J. Biomed. Opt. 2009;14:020502. PubMed PMC
Stettler D.D., Yamahachi H., Li W., Denk W., Gilbert C.D. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron. 2006;49:877–887. PubMed
Tang J., Xi L., Zhou J., Huang H., Zhang T., Carney P.R., Jiang H. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. J. Cereb. Blood Flow Metab. 2015;35:1224–1232. PubMed PMC
Taruttis A., Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics. 2015;9:219–227.
Tiran E., Ferrier J., Deffieux T., Gennisson J.L., Pezet S., Lenkei Z., Tanter M. Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent. Ultrasound Med. Biol. 2017;43:1679–1689. PubMed PMC
Tzoumas S., Kravtsiv A., Gao Y., Buehler A., Ntziachristos V. Statistical molecular target detection framework for multispectral optoacoustic tomography. IEEE Trans. Med. Imaging. 2016;35:2534–2545. PubMed
Wang X., Pang Y., Ku G., Xie X., Stoica G., Wang L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003;21:803–806. PubMed
Wang L., Maslov K., Wang L.V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl. Acad. Sci. USA. 2013;110:5759–5764. PubMed PMC
Weber J., Beard P.C., Bohndiek S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods. 2016;13:639–650. PubMed
Willem M., Tahirovic S., Busche M.A., Ovsepian S.V., Chafai M., Kootar S., Hornburg D., Evans L.D., Moore S., Daria A. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature. 2015;526:443–447. PubMed PMC
Wilt B.A., Burns L.D., Wei Ho E.T., Ghosh K.K., Mukamel E.A., Schnitzer M.J. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 2009;32:435–506. PubMed PMC
Yang Q.X., Smith M.B., Wang J. Vol. 26. Springer; 2006. Magnetic Susceptibility Effects in High Field MRI.
Yang X., Hyder F., Shulman R.G. Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA. 1996;93:475–478. PubMed PMC
Yang X., Hyder F., Shulman R.G. Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn. Reson. Med. 1997;38:874–877. PubMed
Yao J., Wang L.V. Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics. 2014;1:011003. PubMed PMC
Yao J., Wang L., Yang J.M., Maslov K.I., Wong T.T., Li L., Huang C.H., Zou J., Wang L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods. 2015;12:407–410. PubMed PMC
Yu X., Qian C., Chen D.Y., Dodd S.J., Koretsky A.P. Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat. Methods. 2014;11:55–58. PubMed PMC
Zaborszky L., Csordas A., Mosca K., Kim J., Gielow M.R., Vadasz C., Nadasdy Z. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex. 2015;25:118–137. PubMed PMC