Visualizing cortical response to optogenetic stimulation and sensory inputs using multispectral handheld optoacoustic imaging

. 2020 Mar ; 17 () : 100153. [epub] 20191226

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32154103

Grantová podpora
R01 NS122904 NINDS NIH HHS - United States
RF1 NS113278 NINDS NIH HHS - United States

Odkazy

PubMed 32154103
PubMed Central PMC7052434
DOI 10.1016/j.pacs.2019.100153
PII: S2213-5979(19)30076-X
Knihovny.cz E-zdroje

To date, the vast majority of intra-vital neuroimaging systems applied in clinic and diagnostics is stationary with a rigid scanning element, requires specialized facilities and costly infrastructure. Here, we describe a simple yet radical approach for optoacoustic (photoacoustic) brain imaging in vivo using a light-weight handheld probe. It enables multispectral video-rate visualization of hemoglobin gradient changes in the cortex of adult rats induced by whisker and forelimb sensory inputs, as well as by optogenetic stimulation of intra-cortical connections. With superb penetration and molecular specificity, described here in method holds major promises for future applications in research, routine ambulatory neuroimaging, and diagnostics.

Zobrazit více v PubMed

Mosso M. Verlag von Veit und Company; 1881. Uber den Kreislauf des Blutes im Menschlichen Gehirn.

Clark D.D., Clark D.D., Sokoloff L. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspect. Siegel G.J., editor. Lippincott; Philadelphia: 1999.

Ovsepian S.V. The dark matter of the brain. Brain Struct. Funct. 2019;224(3):973–983. PubMed

Raichle M.E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl. Acad. Sci. U. S. A. 1998;95(3):765–772. PubMed PMC

Bandettini P.A. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992;25(2):390–397. PubMed

Kwong K.K. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U. S. A. 1992;89(12):5675–5679. PubMed PMC

Ogawa S. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 1990;87(24):9868–9872. PubMed PMC

Hooker J.M., Carson R.E. Human positron emission tomography neuroimaging. Annu. Rev. Biomed. Eng. 2019;21:551–581. PubMed

Logothetis N.K. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–878. PubMed

Kerr J.N., Denk W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 2008;9(3):195–205. PubMed

Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods. 2010;7(8):603–614. PubMed

Ntziachristos V. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005;23(3):313–320. PubMed

Oraevsky A. Laser opto-acoustic imaging of early mucosal cancer: feasibility studies of a new diagnostic modality in a hamster model of oral cancer. Gastrointest. Endosc. 1999;49(4) Ab158-Ab158.

Taruttis A., Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics. 2015;9(4):219–227.

Ntziachristos V., Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT) Chem. Rev. 2010;110(5):2783–2794. PubMed

Olefir I. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomography. Cell Rep. 2019;26(10):2833–2846. e3. PubMed PMC

Ovsepian S.V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96(5):966–988. PubMed

Buehler A. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 2013;38(9):1404–1406. PubMed

Diot G. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 2017;23(22):6912–6922. PubMed

Taruttis A. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology. 2016;281(1):256–263. PubMed

Burton N.C. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage. 2013;65:522–528. PubMed

Ovsepian S.V., Olefir I., Ntziachristos V. Advances in optoacoustic neurotomography of animal models. Trends Biotechnol. 2019 PubMed

Tang J. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 2016;6:25470. PubMed PMC

Yu X. Sensory and optogenetically driven single-vessel fMRI. Nat. Methods. 2016;13(4):337–340. PubMed PMC

Paxinos G., Watson C. Elsevier; Burlington, MA: 2007. The Rat Brain in Stereotaxtic Coordinates.

Wang L.V., Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods. 2016;13(8):627–638. PubMed PMC

Weber J., Beard P.C., Bohndiek S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods. 2016;13(8):639–650. PubMed

Petrov I.Y. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals. Opt. Express. 2012;20(4):4159–4167. PubMed PMC

Yang X.M., Wang L.V. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 2008;13(4) PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...