Visualizing cortical response to optogenetic stimulation and sensory inputs using multispectral handheld optoacoustic imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 NS122904
NINDS NIH HHS - United States
RF1 NS113278
NINDS NIH HHS - United States
PubMed
32154103
PubMed Central
PMC7052434
DOI
10.1016/j.pacs.2019.100153
PII: S2213-5979(19)30076-X
Knihovny.cz E-zdroje
- Klíčová slova
- Barrel cortex, Brain, Handheld probe, Hemoglobin gradients, Neuroimaging, Optogenetic stimulation, Photoacoustic,
- Publikační typ
- časopisecké články MeSH
To date, the vast majority of intra-vital neuroimaging systems applied in clinic and diagnostics is stationary with a rigid scanning element, requires specialized facilities and costly infrastructure. Here, we describe a simple yet radical approach for optoacoustic (photoacoustic) brain imaging in vivo using a light-weight handheld probe. It enables multispectral video-rate visualization of hemoglobin gradient changes in the cortex of adult rats induced by whisker and forelimb sensory inputs, as well as by optogenetic stimulation of intra-cortical connections. With superb penetration and molecular specificity, described here in method holds major promises for future applications in research, routine ambulatory neuroimaging, and diagnostics.
Department of Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
Zobrazit více v PubMed
Mosso M. Verlag von Veit und Company; 1881. Uber den Kreislauf des Blutes im Menschlichen Gehirn.
Clark D.D., Clark D.D., Sokoloff L. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspect. Siegel G.J., editor. Lippincott; Philadelphia: 1999.
Ovsepian S.V. The dark matter of the brain. Brain Struct. Funct. 2019;224(3):973–983. PubMed
Raichle M.E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl. Acad. Sci. U. S. A. 1998;95(3):765–772. PubMed PMC
Bandettini P.A. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992;25(2):390–397. PubMed
Kwong K.K. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U. S. A. 1992;89(12):5675–5679. PubMed PMC
Ogawa S. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 1990;87(24):9868–9872. PubMed PMC
Hooker J.M., Carson R.E. Human positron emission tomography neuroimaging. Annu. Rev. Biomed. Eng. 2019;21:551–581. PubMed
Logothetis N.K. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–878. PubMed
Kerr J.N., Denk W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 2008;9(3):195–205. PubMed
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods. 2010;7(8):603–614. PubMed
Ntziachristos V. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005;23(3):313–320. PubMed
Oraevsky A. Laser opto-acoustic imaging of early mucosal cancer: feasibility studies of a new diagnostic modality in a hamster model of oral cancer. Gastrointest. Endosc. 1999;49(4) Ab158-Ab158.
Taruttis A., Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics. 2015;9(4):219–227.
Ntziachristos V., Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT) Chem. Rev. 2010;110(5):2783–2794. PubMed
Olefir I. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomography. Cell Rep. 2019;26(10):2833–2846. e3. PubMed PMC
Ovsepian S.V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96(5):966–988. PubMed
Buehler A. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 2013;38(9):1404–1406. PubMed
Diot G. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 2017;23(22):6912–6922. PubMed
Taruttis A. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology. 2016;281(1):256–263. PubMed
Burton N.C. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage. 2013;65:522–528. PubMed
Ovsepian S.V., Olefir I., Ntziachristos V. Advances in optoacoustic neurotomography of animal models. Trends Biotechnol. 2019 PubMed
Tang J. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 2016;6:25470. PubMed PMC
Yu X. Sensory and optogenetically driven single-vessel fMRI. Nat. Methods. 2016;13(4):337–340. PubMed PMC
Paxinos G., Watson C. Elsevier; Burlington, MA: 2007. The Rat Brain in Stereotaxtic Coordinates.
Wang L.V., Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods. 2016;13(8):627–638. PubMed PMC
Weber J., Beard P.C., Bohndiek S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods. 2016;13(8):639–650. PubMed
Petrov I.Y. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals. Opt. Express. 2012;20(4):4159–4167. PubMed PMC
Yang X.M., Wang L.V. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 2008;13(4) PubMed