• This record comes from PubMed

Visualizing cortical response to optogenetic stimulation and sensory inputs using multispectral handheld optoacoustic imaging

. 2020 Mar ; 17 () : 100153. [epub] 20191226

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

Grant support
R01 NS122904 NINDS NIH HHS - United States
RF1 NS113278 NINDS NIH HHS - United States

Links

PubMed 32154103
PubMed Central PMC7052434
DOI 10.1016/j.pacs.2019.100153
PII: S2213-5979(19)30076-X
Knihovny.cz E-resources

To date, the vast majority of intra-vital neuroimaging systems applied in clinic and diagnostics is stationary with a rigid scanning element, requires specialized facilities and costly infrastructure. Here, we describe a simple yet radical approach for optoacoustic (photoacoustic) brain imaging in vivo using a light-weight handheld probe. It enables multispectral video-rate visualization of hemoglobin gradient changes in the cortex of adult rats induced by whisker and forelimb sensory inputs, as well as by optogenetic stimulation of intra-cortical connections. With superb penetration and molecular specificity, described here in method holds major promises for future applications in research, routine ambulatory neuroimaging, and diagnostics.

See more in PubMed

Mosso M. Verlag von Veit und Company; 1881. Uber den Kreislauf des Blutes im Menschlichen Gehirn.

Clark D.D., Clark D.D., Sokoloff L. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspect. Siegel G.J., editor. Lippincott; Philadelphia: 1999.

Ovsepian S.V. The dark matter of the brain. Brain Struct. Funct. 2019;224(3):973–983. PubMed

Raichle M.E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl. Acad. Sci. U. S. A. 1998;95(3):765–772. PubMed PMC

Bandettini P.A. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992;25(2):390–397. PubMed

Kwong K.K. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U. S. A. 1992;89(12):5675–5679. PubMed PMC

Ogawa S. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 1990;87(24):9868–9872. PubMed PMC

Hooker J.M., Carson R.E. Human positron emission tomography neuroimaging. Annu. Rev. Biomed. Eng. 2019;21:551–581. PubMed

Logothetis N.K. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–878. PubMed

Kerr J.N., Denk W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 2008;9(3):195–205. PubMed

Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods. 2010;7(8):603–614. PubMed

Ntziachristos V. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005;23(3):313–320. PubMed

Oraevsky A. Laser opto-acoustic imaging of early mucosal cancer: feasibility studies of a new diagnostic modality in a hamster model of oral cancer. Gastrointest. Endosc. 1999;49(4) Ab158-Ab158.

Taruttis A., Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics. 2015;9(4):219–227.

Ntziachristos V., Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT) Chem. Rev. 2010;110(5):2783–2794. PubMed

Olefir I. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomography. Cell Rep. 2019;26(10):2833–2846. e3. PubMed PMC

Ovsepian S.V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96(5):966–988. PubMed

Buehler A. Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 2013;38(9):1404–1406. PubMed

Diot G. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 2017;23(22):6912–6922. PubMed

Taruttis A. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology. 2016;281(1):256–263. PubMed

Burton N.C. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage. 2013;65:522–528. PubMed

Ovsepian S.V., Olefir I., Ntziachristos V. Advances in optoacoustic neurotomography of animal models. Trends Biotechnol. 2019 PubMed

Tang J. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. Sci. Rep. 2016;6:25470. PubMed PMC

Yu X. Sensory and optogenetically driven single-vessel fMRI. Nat. Methods. 2016;13(4):337–340. PubMed PMC

Paxinos G., Watson C. Elsevier; Burlington, MA: 2007. The Rat Brain in Stereotaxtic Coordinates.

Wang L.V., Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods. 2016;13(8):627–638. PubMed PMC

Weber J., Beard P.C., Bohndiek S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods. 2016;13(8):639–650. PubMed

Petrov I.Y. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals. Opt. Express. 2012;20(4):4159–4167. PubMed PMC

Yang X.M., Wang L.V. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 2008;13(4) PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...