A Comprehensive Physicochemical, In Vitro and Molecular Characterization of Letrozole Incorporated Chitosan-Lipid Nanocomplex
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
30850895
DOI
10.1007/s11095-019-2597-4
PII: 10.1007/s11095-019-2597-4
Knihovny.cz E-zdroje
- Klíčová slova
- PLN, aromatase inhibitor, non-everted sac study, chitosan-lipid nanocomplex, letrozole, molecular dynamics,
- MeSH
- buňky PC12 MeSH
- chitosan chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- krysa rodu Rattus MeSH
- lékové transportní systémy metody MeSH
- letrozol chemie MeSH
- lidé MeSH
- lipidy chemie MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- simulace molekulární dynamiky MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan MeSH
- letrozol MeSH
- lipidy MeSH
- nosiče léků MeSH
- polymery MeSH
PURPOSE: The aim of this study is to show a new mesomicroscopic insight into Letrozole (LTZ) loaded nanocomplexes and their ex vivo characteristics as a drug delivery system. METHODS: The LTZ loaded hybrid chitosan-based carrier was fabricated using a modified ionic crosslinking technique and characterized in more detail. To understand the mechanism of LTZ action encapsulated in the hybrid polymer-lipid carrier, all-atom molecular dynamics simulations were also used. RESULTS: The physicochemical properties of the carrier demonstrated the uniform morphology, but different drug loading ratios. In vitro cytotoxic activity of the optimized carrier demonstrated IC50 of 67.85 ± 0.55 nM against breast cancer cell line. The ex vivo study showed the positive effect of nanocomplex on LTZ permeability 7-10 fold greater than the free drug. The molecular dynamic study also confirmed the prsence of hydrophobic peak of lipids at a distance of 5 Å from the center of mass of LTZ which proved drug entrapment in the core of nanocomplex. CONCLUSIONS: The hybrid nanoparticle increased the cytotoxicity and tissue permeability of LTZ for oral delivery. This study also confirmed the atomic mesostructures and interaction of LTZ in the core of hybrid polymer-lipid nanoparticles.
Zobrazit více v PubMed
J Steroid Biochem Mol Biol. 2003 Oct;87(1):35-45 PubMed
Cancer Res. 2006 Aug 1;66(15):7775-82 PubMed
Nanomedicine. 2006 Mar;2(1):8-21 PubMed
Acta Physiol (Oxf). 2008 Feb;192(2):273-85 PubMed
Pharmazie. 2008 May;63(5):361-5 PubMed
Colloids Surf B Biointerfaces. 2010 Mar 1;76(1):292-7 PubMed
Nat Nanotechnol. 2011 Aug 21;6(9):580-7 PubMed
J Pharmacol Toxicol Methods. 2012 Jan;65(1):13-7 PubMed
Colloids Surf B Biointerfaces. 2012 May 1;93:36-40 PubMed
Colloids Surf B Biointerfaces. 2012 May 1;93:241-8 PubMed
Int J Pharm. 2012 Nov 1;437(1-2):172-7 PubMed
Nanomedicine. 2013 May;9(4):474-91 PubMed
J Microencapsul. 2014;31(3):239-45 PubMed
Talanta. 2013 Dec 15;117:511-7 PubMed
Colloids Surf B Biointerfaces. 2014 Apr 1;116:169-75 PubMed
Mol Biol Rep. 2014 May;41(5):3521-7 PubMed
Chem Phys Lipids. 2014 Jul;181:56-61 PubMed
Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:487-98 PubMed
Carbohydr Polym. 2015 May 20;122:221-9 PubMed
Eur J Pharm Sci. 2016 Feb 15;83:45-51 PubMed
Front Neurosci. 2016 Jan 12;9:504 PubMed
Nat Biotechnol. 2016 Apr;34(4):414-8 PubMed
Drug Dev Ind Pharm. 2017 Jan;43(1):1-11 PubMed
Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:67-74 PubMed
Int J Pharm. 2017 Jan 10;516(1-2):120-130 PubMed
Eur J Pharm Sci. 2017 Mar 1;99:285-291 PubMed
Int J Biol Macromol. 2018 Feb;107(Pt B):2525-2533 PubMed
Pharm Res. 2017 Dec;34(12):2798-2808 PubMed
Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:540-546 PubMed
Clin Cancer Res. 1995 Dec;1(12):1511-5 PubMed