A Dogma in Doubt: Hydrolysis of Equatorial Ligands of PtIV Complexes under Physiological Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
16-06240S
Grantová Agentura České Republiky - International
PubMed
30870571
PubMed Central
PMC6766845
DOI
10.1002/anie.201900682
Knihovny.cz E-zdroje
- Klíčová slova
- antitumor agents, hydrolysis, platinum(IV) complexes, prodrugs, reduction,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.
Zobrazit více v PubMed
Muggia F. M., Bonetti A., Hoeschele J. D., Rozencweig M., Howell S. B., J. Clin. Oncol. 2015, 33, 4219. PubMed
Wheate N. J., Walker S., Craig G. E., Oun R., Dalton Trans. 2010, 39, 8113. PubMed
Dasari S., Bernard Tchounwou P., Eur. J. Pharmacol. 2014, 740, 364. PubMed PMC
Englinger B., Pirker C., Heffeter P., Terenzi A., Kowol C. R., Keppler B. K., Berger W., Chem. Rev. 2019, 119, 1519. PubMed
Siddik Z. H., Oncogene 2003, 22, 7265. PubMed
Boulikas T., Vougiouka M., Oncol. Rep. 2003, 10, 1663. PubMed
Deo K. M., Ang D. L., McGhie B., Rajamanickam A., Dhiman A., Khoury A., Holland J., Bjelosevic A., Pages B., Gordon C., Coord. Chem. Rev. 2018, 375, 148;
Gibson D., J. Inorg. Biochem. 2018, 191, 77; PubMed
Kenny R. G., Chuah S. W., Crawford A., Marmion C. J., Eur. J. Inorg. Chem. 2017, 1596.
Taube H., Chem. Rev. 1952, 50, 69;
Wexselblatt E., Gibson D., J. Inorg. Biochem. 2012, 117, 220. PubMed
Hall M. D., Hambley T. W., Coord. Chem. Rev. 2002, 232, 49.
Pichler V., Göschl S., Schreiber-Brynzak E., Jakupec M. A., Galanski M., Keppler B. K., Metallomics 2015, 7, 1078. PubMed
Carr J. L., Tingle M. D., McKeage M. J., Cancer Chemother. Pharmacol. 2006, 57, 483; PubMed
Nemirovski A., Kasherman Y., Tzaraf Y., Gibson D., J. Med. Chem. 2007, 50, 5554. PubMed
Petruzzella E., Sirota R., Solazzo I., Gandin V., Gibson D., Chem. Sci. 2018, 9, 4299; PubMed PMC
Wong D. Y. Q., Yeo C. H. F., Ang W. H., Angew. Chem. Int. Ed. 2014, 53, 6752; PubMed
Angew. Chem. 2014, 126, 6870.
Schilder R. J., LaCreta F. P., Perez R. P., Johnson S. W., Brennan J. M., Rogatko A., Nash S., McAleer C., Hamilton T. C., Roby D., Cancer Res. 1994, 54, 709. PubMed
Anderson H., Wagstaff J., Crowther D., Swindell R., Lind M. J., McGregor J., Timms M. S., Brown D., Palmer P., Eur. J. Cancer Clin. Oncol. 1988, 24, 1471. PubMed
Wexselblatt E., Yavin E., Gibson D., Angew. Chem. Int. Ed. 2013, 52, 6059; PubMed
Angew. Chem. 2013, 125, 6175.
Poon G., Mistry P., Raynaud F., Harrap K., Murrer B., Barnard C., J. Pharm. Biomed. Anal. 1995, 13, 1493; PubMed
Raynaud F., Mistry P., Donaghue A., Poon G., Kelland L., Barnard C., Murrer B., Harrap K., Cancer Chemother. Pharmacol. 1996, 38, 155. PubMed
Jerremalm E., Videhult P., Alvelius G., Griffiths W. J., Bergman T., Eksborg S., Ehrsson H., J. Pharm. Sci. 2002, 91, 2116. PubMed
Jerremalm E., Eksborg S., Ehrsson H., J. Pharm. Sci. 2003, 92, 436. PubMed
Michalak A., Mitoraj M., Ziegler T., J. Phys. Chem. A 2008, 112, 1933; PubMed
Mitoraj M., Michalak A., J. Mol. Model. 2007, 13, 347; PubMed
Mitoraj M. P., Michalak A., Ziegler T., J. Chem. Theory Comput. 2009, 5, 962. PubMed
Sjoberg P., Murray J. S., Brinck T., Politzer P., Can. J. Chem. 1990, 68, 1440. PubMed
Ritacco I., Mazzone G., Russo N., Sicilia E., Inorg. Chem. 2016, 55, 1580; PubMed
Zhao J., Xu Z., Lin J., Gou S., Inorg. Chem. 2017, 56, 9851. PubMed
Bradáč O., Zimmermann T., Burda J. V., J. Mol. Model. 2008, 14, 705. PubMed
Gavezzotti A., Rizzato S., J. Org. Chem. 2014, 79, 4809. PubMed
Zhang J. Z., Wexselblatt E., Hambley T. W., Gibson D., Chem. Commun. 2012, 48, 847. PubMed
Mayr J., Heffeter P., Groza D., Galvez L., Koellensperger G., Roller A., Alte B., Haider M., Berger W., Kowol C. R., Chem. Sci. 2017, 8, 2241; PubMed PMC
Varbanov H. P., Valiahdi S. M., Kowol C. R., Jakupec M. A., Galanski M., Keppler B. K., Dalton Trans. 2012, 41, 14404. PubMed
Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y., Proc. Natl. Acad. Sci. USA 1998, 95, 6803. PubMed PMC