A Dogma in Doubt: Hydrolysis of Equatorial Ligands of PtIV Complexes under Physiological Conditions

. 2019 May 27 ; 58 (22) : 7464-7469. [epub] 20190425

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30870571

Grantová podpora
16-06240S Grantová Agentura České Republiky - International

Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.

Zobrazit více v PubMed

Muggia F. M., Bonetti A., Hoeschele J. D., Rozencweig M., Howell S. B., J. Clin. Oncol. 2015, 33, 4219. PubMed

Wheate N. J., Walker S., Craig G. E., Oun R., Dalton Trans. 2010, 39, 8113. PubMed

Dasari S., Bernard Tchounwou P., Eur. J. Pharmacol. 2014, 740, 364. PubMed PMC

Englinger B., Pirker C., Heffeter P., Terenzi A., Kowol C. R., Keppler B. K., Berger W., Chem. Rev. 2019, 119, 1519. PubMed

Siddik Z. H., Oncogene 2003, 22, 7265. PubMed

Boulikas T., Vougiouka M., Oncol. Rep. 2003, 10, 1663. PubMed

Deo K. M., Ang D. L., McGhie B., Rajamanickam A., Dhiman A., Khoury A., Holland J., Bjelosevic A., Pages B., Gordon C., Coord. Chem. Rev. 2018, 375, 148;

Gibson D., J. Inorg. Biochem. 2018, 191, 77; PubMed

Kenny R. G., Chuah S. W., Crawford A., Marmion C. J., Eur. J. Inorg. Chem. 2017, 1596.

Taube H., Chem. Rev. 1952, 50, 69;

Wexselblatt E., Gibson D., J. Inorg. Biochem. 2012, 117, 220. PubMed

Hall M. D., Hambley T. W., Coord. Chem. Rev. 2002, 232, 49.

Pichler V., Göschl S., Schreiber-Brynzak E., Jakupec M. A., Galanski M., Keppler B. K., Metallomics 2015, 7, 1078. PubMed

Carr J. L., Tingle M. D., McKeage M. J., Cancer Chemother. Pharmacol. 2006, 57, 483; PubMed

Nemirovski A., Kasherman Y., Tzaraf Y., Gibson D., J. Med. Chem. 2007, 50, 5554. PubMed

Petruzzella E., Sirota R., Solazzo I., Gandin V., Gibson D., Chem. Sci. 2018, 9, 4299; PubMed PMC

Wong D. Y. Q., Yeo C. H. F., Ang W. H., Angew. Chem. Int. Ed. 2014, 53, 6752; PubMed

Angew. Chem. 2014, 126, 6870.

Schilder R. J., LaCreta F. P., Perez R. P., Johnson S. W., Brennan J. M., Rogatko A., Nash S., McAleer C., Hamilton T. C., Roby D., Cancer Res. 1994, 54, 709. PubMed

Anderson H., Wagstaff J., Crowther D., Swindell R., Lind M. J., McGregor J., Timms M. S., Brown D., Palmer P., Eur. J. Cancer Clin. Oncol. 1988, 24, 1471. PubMed

Wexselblatt E., Yavin E., Gibson D., Angew. Chem. Int. Ed. 2013, 52, 6059; PubMed

Angew. Chem. 2013, 125, 6175.

Poon G., Mistry P., Raynaud F., Harrap K., Murrer B., Barnard C., J. Pharm. Biomed. Anal. 1995, 13, 1493; PubMed

Raynaud F., Mistry P., Donaghue A., Poon G., Kelland L., Barnard C., Murrer B., Harrap K., Cancer Chemother. Pharmacol. 1996, 38, 155. PubMed

Jerremalm E., Videhult P., Alvelius G., Griffiths W. J., Bergman T., Eksborg S., Ehrsson H., J. Pharm. Sci. 2002, 91, 2116. PubMed

Jerremalm E., Eksborg S., Ehrsson H., J. Pharm. Sci. 2003, 92, 436. PubMed

Michalak A., Mitoraj M., Ziegler T., J. Phys. Chem. A 2008, 112, 1933; PubMed

Mitoraj M., Michalak A., J. Mol. Model. 2007, 13, 347; PubMed

Mitoraj M. P., Michalak A., Ziegler T., J. Chem. Theory Comput. 2009, 5, 962. PubMed

Sjoberg P., Murray J. S., Brinck T., Politzer P., Can. J. Chem. 1990, 68, 1440. PubMed

Ritacco I., Mazzone G., Russo N., Sicilia E., Inorg. Chem. 2016, 55, 1580; PubMed

Zhao J., Xu Z., Lin J., Gou S., Inorg. Chem. 2017, 56, 9851. PubMed

Bradáč O., Zimmermann T., Burda J. V., J. Mol. Model. 2008, 14, 705. PubMed

Gavezzotti A., Rizzato S., J. Org. Chem. 2014, 79, 4809. PubMed

Zhang J. Z., Wexselblatt E., Hambley T. W., Gibson D., Chem. Commun. 2012, 48, 847. PubMed

Mayr J., Heffeter P., Groza D., Galvez L., Koellensperger G., Roller A., Alte B., Haider M., Berger W., Kowol C. R., Chem. Sci. 2017, 8, 2241; PubMed PMC

Varbanov H. P., Valiahdi S. M., Kowol C. R., Jakupec M. A., Galanski M., Keppler B. K., Dalton Trans. 2012, 41, 14404. PubMed

Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y., Proc. Natl. Acad. Sci. USA 1998, 95, 6803. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...