Reprogramming of CaCo2 colorectal cancer cells after using the complex of poly-(N-vinylpyrrolidone) with small non-coding RNAs
Status PubMed-not-MEDLINE Jazyk angličtina Země Irsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30899675
PubMed Central
PMC6405903
DOI
10.1016/j.toxrep.2019.02.001
PII: S2214-7500(18)30720-0
Knihovny.cz E-zdroje
- Klíčová slova
- AGO2, argonaute 2, Amphiphilic poly-(N-vinylpyrrolidone), BACH1, BTB domain and CNC homolog 1, CD, cluster of differentiation, CaCo2 colorectal adenocarcinoma, DICER1, ribonuclease III, DNMT1, DNA methyltransferase 1, DTT, dithyothreitol, ERK1/2, extracellular signal regulated kinase ½, FGF2, fibroblast growth factor 2, GITR3A, glucocorticoid-induced TNFR-related protein, H3K9me3, tri-methyl lysine 9 of histone H3, HILI, human piwi, HMOX1, heme oxygenase 1, HOXA10, homebox A10, ICOS1B, inducible T-cell co-stimulator, IL, interleukin, KIR1DL2, CD158b, expressed on natural killer cells and a subset of T cells, MKI-67, marker of proliferation ki-67, OCT4, octamer-binding transcription factor 4, PIWIL1, piwi-like protein 1, PNVP, poly-(N-vinylpyrrolidone), Polymer carriers, RB1, retinoblastoma 1, Reprogramming, SncRNAs, small non-coding RNAs, TE, transposon elements, TGFBR2, transforming growth factor beta receptor 2, TNFRS6B, TNF receptor superfamily 6B, TSS, transcriptional start sites, VMAF, musculoaponeurotic fibrosarcoma, Wnt-1, wingless type MMTV integration site family, member 1, iPS, induced pluripotent stem cells, mTOR, mechanistic target of rapamycin, miR, micro-RNA, miRNA-152, piR, piwi-interacting RNA, P-element induced wimpy testis interacting RNA, piRNA-30074,
- Publikační typ
- časopisecké články MeSH
Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory molecules play a key role in the development of human diseases and are used often today for researching new treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epigenetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells using fluorescence.
Zobrazit více v PubMed
Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. 2011;12:246–258. PubMed
Klimenko O.V., Onishi Y. The disappeared cancer cell by sncRNAs: application of DDMC vector/sncRNAs complex for transformation of cancer cells into non-cancerous cells. J. Nanomed. Biother. Discov. 2018;8:1–2.
Klimenko O.V. Small non-coding RNAs as regulators of structural evolution and carcinogenesis. Noncoding RNA Res. 2017;2:88–92. PubMed PMC
Pulito C., Donzelli S., Muti P., Puzzo L., Strano S., Blandino G. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Ann. Transl. Med. 2014;2:58. PubMed PMC
Hatziapostolou M., Polytarchou C., Iliopoulos D. miRNAs link metabolic reprogramming to oncogenesis, Trends Endocrinol. Metabolism. 2013;24:361–373. PubMed
Lewis B.P., Shih I.H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798. PubMed
Krek A., Grun D., Poy M.N., Wolf R., Rosenberg L., Epstein E.J. Combinatorial microRNA target predictions. Nat. Genet. 2005;37:495–500. PubMed
Griffiths-Jones S., Grocock R.J., van A., Bateman D.S., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. PubMed PMC
Klimenko O.V. Joint action of the nano-sized system of small non-coding RNAs with DDMC vector and recombinant IL-7 reprograms A-549 lung adenocarcinoma cells into CD4+ cells. Immunother. (Los Angel) 2017;3:1–8.
Klimenko O.V. Complex of small non-coding RNAs piR-30074 and Antago-miR-155 and miR-125b with DDMC carrier transforms girardi heart cells into CD4+ cells. J. Cancer Tumor. Int. 2016;4:1–8.
Klimenko O.V., Shtilman M.I. Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155. Cancer Gene Ther. 2013;20:237–241. PubMed
Torchilin V.P., Levchenko T.S., Whiteman K.R., Yaroslavov A.A., Tsatsakis A.M., Rizos A.K., Michailova E.V., Shtilman M.I. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 2001;22:3035–3044. PubMed
Rizos A.K., Tsikalis I., Tsatsakis A.M., Shtilman M.I. Characterization of amphiphilic poly-N-vinylpyrrolidone derivatives by dynamic light scattering. J. Non-Crystall. Solids. 2006;352:5055–5059.
Kuskov A.N., Shtilman M.I., Goryachaya A.V., ashmuhamedov R.I.T., Yaroslavov A.A., Torchilin V.P., Tsatsakis A.M., Rizos A.K. Self-assembling nanoscaled drug delivery systems composed of amphiphilic poly-N-vinylpyrrolidones. J. Non-Crystall. Solids. 2007;353:3969–3975.
Kuskov A.N., Villemson A.L., Larionova N.I., Tsatsakis A.M., Shtilman M.I. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins. J. Phys.: Condens. Mater. 2007;19:459–468.
Kuskov A.N., Voskresenskaya A.A., Goryachaya A.V., Artyukhov A.A., Shtilman M.I., Tsatsakis A.M. Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin. J. Mater. Sci.: Mater. Med. 2010;21:1521–1530. PubMed
Luss A.L., Andersen C.L., Benito I.G., Marzo R.C., Medina Z.H., Rosenlund M.B., Romme S.B., Kulikov P.P., Pennisi C.P., Shtilman M.I., Gurevich L. Drug delivery platform based on amphiphilic Poly-N-Vinyl-2-Pyrrolidone: the role of size distribution in cellular uptake. Biophys. J. 2018;114:278–279. PubMed
Kuskov A.N., Voskresenskaya A.A., Goryachaya A.V., Shtilman M.I., Spandidos D.A., Rizos A.K., Tsatsakis A.M. Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for non-steroidal anti-inflammatory drugs: characterization and in vitro controlled release of indomethacin. Int. J. Mol. Med. 2010;26:85–94. PubMed
Kuskov A.N., Kulikov P.P., Shtilman M.I., Rakitskii V.N., Tsatsakis A.M. Amphiphilic poly-N-vynilpyrrolidone nanoparticles: cytotoxicity and acute toxicity study. Food Chem. Toxicol. 2016;96:273–279. PubMed
Kuskov A.N., Kulikov P.P., Goryachaya A.V., Tzatzarakis M., Docea A.O., Velonia K., Shtilman M.I., Tsatsakis A.M. Amphiphilic poly-N-vinylpyrrolidonee nanoparticles as carriers for nonsteroidal, anti-inflammatory drugs: in vitro cytotoxicity and in vivo acute toxicity study, Nanomedicine: nanotechnology. Biol. Med. 2017;13:1021–1030. PubMed
Basak E., Neagu M., Nikitovich D., Henrich-Noack P., Docea A., Shtilman M., Golokhvast K., Tsatsakis A. Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: the cell and immune system Ayse. Part. Fibre Toxicol. 2017;14:22–28. PubMed PMC
Kuskov A.N., Kulikov P.P., Goryachaya A.V., Tsatzarakis M.N., Tsatsakis A.M., Velonia K., Shtilman M.I. Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: stability aspects. J. Appl. Polym. Sci. 2018;135:45673.
Shcherbo E.M., Merzlyak T.V., Chepurnykh A.F., Fradkov G.V., Ermakova E.A. Solovieva. Bright far-red fluorescent protein for whole body imaging. Nat. Methods. 2007;4:741–746. PubMed
Guo S.-L., Peng Z., Yang X., Fan K.-J., Ye H., Li Z.-H. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 2011;7:567–574. PubMed PMC
Zhang H., Li Y., Huang Q., Ren X., Hu H., Sheng H. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18:1702–1710. PubMed PMC
Palmqvist R., Sellberg P., Oberg A., Tavelin B., Rutegard J.N., Stenling R. Low tumour cell proliferation at the invasive margin is associated with a poor prognosis in Dukes’ stage B colorectal cancers. Br. J. Cancer. 1999;79:577–581. PubMed PMC
Kimura T., Tanaka S., Haruma K., Sumii K., Kajiyama G., Shimamoto F. Clinical significance of MUC1 and E-cadherin expression, cellular proliferation, and angiogenesis at the deepest invasive portion of colorectal cancer. Int. J. Oncol. 2000;16:55–64. PubMed
Allegra C.J., Paik S., Colangelo L.H., Parr A.L., Kirsch I., Kim G. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes’ B and C colon cancer: a National Cancer institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J. Clin. Oncol. 2003;21:241–250. PubMed
Fluge Q., Gravdal K., Carlsen E., Vonen B., Kjellevold K., Refsum S. Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br. J. Cancer. 2009;101:1282–1289. PubMed PMC
Matsubara S., Ding Q., Miyazaki Y., Kuwahata T., Tsukasa K., Takao S. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions. Sci. Rep. 2013;3:3230. PubMed PMC
Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. 6-E. Elsevier Inc.; 2007. Lymphocyte development and the rearrangement and expression of antigen receptor genes; p. 177.
Bagga S., Bracht J., Hunter S., Massier K., Holtz J., Eachus R. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122:553–563. PubMed
Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’UTR as in the 3’UTR. PNAS. 2007;104:9667–9672. PubMed PMC
Folco H.D., Pidoux A.L., Urano T., Allshire R.C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science. 2008;319:94–97. PubMed PMC
Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–1128. PubMed
Varambally S., Cao Q., Mani R.S., Shankar S., Wang X., Ateeq B. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–1699. PubMed PMC
Hanna J., Saha K., Pando B., van Zon J., Lengner C.J., Creyghton M.P., van Oudenaarden A., Jaenisch R. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462:595–601. PubMed PMC
Cox D.N., Chao A., Baker J., Chang L., Qiao D., Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 2008;12:3715–3727. PubMed PMC
Cox D.N., Chao A., Lin H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development. 2000;127:503–514. PubMed
Yang C., Su H., Liao X., Han C., Yu T., Zhu G., Wang X., Winkler C.A., O’Brien S.J., Peng T. Marker of proliferation Ki-67 expression is associated with transforming growth factor beta 1 and can predict the prognosis of patients with hepatic B virus-related hepatocellular carcinoma. Cancer Manag. Res. 2018;10:679–696. PubMed PMC
Zhao L., Chen H., Hu B., Zhang H., Lin Q. Prognostic significance of Ki67 expression and the derived neutrophil-lymphocyte ratio in nasopharyngeal carcinoma. Cancer Manag. Res. 2018;10:1919–1926. PubMed PMC
Miller L., Min M., Yang C., Tian C., Gookin S., Carter D., Spencer S.L. Ki67 is graded rather than a binary marker of proliferation versus quiescence. Cell Rep. 2018;24:1105–1112. PubMed PMC
Grivna S.T., Pyhtila B., Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. PNAS. 2006;103:13415–13420. PubMed PMC
Grivna S.T., Beyret E., Wang Z., Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006;20:1709–1714. PubMed PMC
Chen Y., Song Y.-X., Wang Z.-N. The microRNA-148/152 family: multi-faceted players. Mol. Cancer. 2013;12:43–51. PubMed PMC
Guan Z., Song B., Liu F., Sun D., Wang K., Qu H. TGF-b induces HLA-G expression through inhibiting miR-152 in gastric cancer cells. J. Biomed. Sci. 2015;22:107–113. PubMed PMC
Dang Y.W., Zeng J., He R.Q., Rong M.H., Luo D.Z., Chen G. Effects of miR-152 on cell growth inhibition, motility suppression and apoptosis induction in hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev. 2014;15:4969–4976. PubMed
Cheng Z., Ma R., Tan W., Zhang L. MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp. Mol. Med. 2014;46:e112–e120. PubMed PMC
Takahashi M., Cuatrecasas M., Balaguer F., Hur K., Toiyama Yu., Castells A. The clinical significance of miR-148a as predictive biomarker in patients with advanced colorectal cancer. PLoS One. 2012;7 PubMed PMC
Peschansky V.J., Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9:3–12. PubMed PMC
Meller V.H., Joshi S.S., Deshpande N. Modulation of chromatin by noncoding RNA. Annu. Rev. Genet. 2015;49:673–695. PubMed
Gaspar-Maia A., Alajem A., Meshorer E., Ramalho-Santos M. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 2011;12:36–47. PubMed PMC
Singhal N., Graumann J., Wu G., Arauzo-Bravo M.J., Han D.W., Greber B. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell. 2010;141:943–955. PubMed
Kuramochi-Miyagawa S., Kimura T., Ijiri T.W., Isobe T., Asada N., Fujita Y. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development. 2004;131:839–849. PubMed
Carmell M.A., Girard A., van de Kant H.J., Bourc’his D., Bestor T.H., deRooij D.G. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 2007;12:503–514. PubMed
Klattenhoff C., Bratu D.P., McGinnis-Schultz N., Koppetsch B.S., Cook H.A., Theurkauf W.E. Drosopilarasi RNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell. 2007;12:45–55. PubMed
Lau N.C., Seto A.G., Kim J., Kuramochi-Miyagawa S., Nakano T., Barte D.P. Characterisation of the piRNA complex from rat testes. Science. 2006;313:363–367. PubMed
Whangbo J.S., Hunter C.P. Environmental RNA interference. Trends Genet. 2008;24:297–305. PubMed
Robert V.J., Davis M.W., Jorgensen E.M., Bessereau J.-L. Gene conversion and End-Joining-Repair double-strand breaks in the Caenorhabditis elegans germline. Genetics. 2008;180:673–679. PubMed PMC
Wang Q.E., Han C., Milum K., Wani A.A. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res. 2011;708:59–68. PubMed PMC
Ishizu H., Siomi H., Siomi M.C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–2373. PubMed PMC
Wang Y., Sun T., Wang K., Wang J.-X., Li P.F. PiRNAs link epigenetic modifications to reprogramming. Histol. Histopathol. 2014;29:1–9. PubMed
Moyano M., Giovanni S. piRNA involvement in genome stability and human cancer. J. Hematol. Oncol. 2015;8:38. PubMed PMC
Heneghan H.M., Miller N., Lowery A.J., Sweeney K.J., Newell J., Kerin M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 2010;251:499–505. PubMed
Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128:1089–1103. PubMed
Gunawardane S., Saito K., Nishida K.M., Miyoshi K., Kawamura Y., Nagami T. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science. 2007;315:1587–1590. PubMed
Ahmadzada T., Reid G., McKenzie D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev. 2018;10:69–86. PubMed PMC
Chakraborty C., Sharma A.R.G., Sarkar B.K., Lee S.-S. The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget. 2018;9:10164–10174. PubMed PMC
Chakraborty C., Sharma A.R., Sharma G., Doss C.G.P., Lee S.-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids. 2017;8:132–143. PubMed PMC
Chalbatani G.M., Dana H., Memari F., Gharagozolou E., Ashjaei S., Kheirandish P., Marmari V., Mahmoudzadeh H., Maleki A.R., Sadeghian E., Nia E.Z., Miri S.R., Nia N.Z., Rezaeian O., Eskandary A., Razavi N., hirkhoda M., Rouzbahani F.N. Biological function and molecular mechanism of piRNA in cancer. Pract. Lab. Med. 2018;7(December) PubMed PMC