Small non-coding RNAs as regulators of structural evolution and carcinogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30159425
PubMed Central
PMC6096422
DOI
10.1016/j.ncrna.2017.06.002
PII: S2468-0540(17)30021-5
Knihovny.cz E-zdroje
- Klíčová slova
- Carcinogenesis, Small non-coding RNAs, Structural evolution, Transposable elements,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Small non-coding RNAs (sncRNAs) are part of non-coding oligonucleotide regulators with wide physiologic and morphologic functions. They control genetic programing of cells, and may modulate processes of differentiation and death. Biogenesis of sncRNAs is now known, and some sncRNAs have been proposed as markers of malignization. Epigenetic therapy is based on the use of newly discovered genetic modifiers, such as sncRNAs, micro-RNAs, and theirs mimics. However, role of sncRNAs in structural evolution and mechanisms of adaptation is not clearly understood. Certainly, non-coding RNAs participate in processes of cellular and organismal adaptation as well as cellular and tissue structural transformation as response to changing of environmental neighbouring. Investigations into these functions of sncRNAs may be the basis of future epigenetic environmental medicine.
Zobrazit více v PubMed
Van Wolfswinkel J.C., Ketting R.F. The role of small non-coding RNAs in genome stability and chromatin organization. J. Cell Sci. 2010;123:1825–1839. PubMed
Kimmel M. Evolution and cancer: a mathematical biology approach. Biol. Direct. 2012;5:29. PubMed PMC
Gatenby R.A. Commentary: carcinogenesis as darwinian evolution? Do the math! Int. J. Epidemiol. 2006;35:1165–1167. PubMed
Vineis P. Commentary: cancer as an evolutionary process at the cell level: an epidemiological perspective. Carcinogenesis. 2003;24(1):1–6. PubMed
Hanahan D., Weinberg R.A. Hallm. cancer Cell. 2000;100:57–70. PubMed
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. PubMed
Amer M.H. Gene therapy for cancer: present status and future perspective. Mol. Cell Ther. 2014;2:27–46. PubMed PMC
Saadatpour Z., Bjorklund G., Chirumbolo S., Alimohammadi M., Ehsani H., Ebrahiminejad H., Pourghamyari H., Baghaei B., Mirzaei H.R., Sahebkar A., Mirzaei H., Keshavarzi M. Molecular imaging and cancer gene therapy. Canc. Gene Ther. 2016;18 Nov PubMed
Siddique N., Raza H., Ahmed S., Khurshid Z., Zafar M.S. Gene therapy: a paradigm shift in density. Genes. 2016;7:98–110. PubMed PMC
Chaudry A., Akhtar D. Gene therapy and modification as a therapeutic strategy for cancer. UOJM. 2016;6(1):44–49.
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., Lagarde J., Veeravalli L., Ruan X., Ruan Y., Lassmann T., Carninci P., Lipovich L., Gonzalez J.M., Davis C.A., Shiekhattar R., Gingeras T.R., Hubbard T.J., Notredame C., Harrow J., Guigó R. The GENCODE v7 catalog of human long noncoding RNAs : analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–1789. PubMed PMC
Li C.H., Chen Y. Small and long non-coding RNAs: novel targets in perspective cancer therapy. Curr. Genomics. 2015;16:319–326. PubMed PMC
Klimenko O.V., Shtilman M.I. Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155. Canc. Gene Ther. 2013;20(4):237–241. PubMed
Klimenko O.V. Complex of small non-coding RNAs piR-30074 and antago-miR-155 and miR-125b with DDMC carrier transforms Girardi Heart cells into CD4+ cells. J. Canc. Tumor Int. 2016;4(4):1–8.
Klimenko O.V. Joint action of the nano-sized system of small non-coding RNAs with DDMC vector and recombinant IL-7 reprograms A-549 lung adenocarcinoma cells into CD4+ cells. Immunother. (Los Angel.) 2017;3:1–6.
Munshi A., Mohan V., Ahuja Y.R. Non-coding RNAs: a dynamic and complex network of gene regulation. J. Pharmacogenomics Pharmacoproteomics. 2016;7(1):1–11.
Yuan Sh, Oliver D., Schuster A., Zheng H., Yan W. Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci. Rep. 2015;5(9266):1–10. PubMed PMC
Hollick J.B. Paramutation and related phenomena in diverse species. Nat. Rev. Gen. 2017;18:5–23. PubMed
Buckley R.M., Adelson D.L. Mammalian genome evolution as a result of epigenetic regulation of transposable elements. Biol. Mol. Concepts. 2014;5(3):183–194. PubMed
Ho M.-W. Non-coding RNA and evolution of complexity. Sci. Soc. Archive. 2014;16 Jun
Chenais B. Transposable elements and human cancer: a casual relationship? BBA: Rev. Canc. 2013;1835(1):28–35. PubMed
Malone C.D., Hannon G.L. Small RNAs as guardians of the genome. Cell. 2009;136:656–668. PubMed PMC
Saito K. The epigenetic regulation of transposable elements by PIWI-interacting RNAs in Drosphila. Genes Genet. Syst. 2013;88:9–17. PubMed
Moyano M., Stefani G. PiRNA involvement in genome stability and human cancer. J. Hematol. Oncol. 2015;8:38. PubMed PMC
Skipper K.A., Andersen P.R., Sharma N., Mikkelsen G. DNA transposon-based vehicles – scenes from an evolutionary drive. J. Biomed. Sci. 2013;20:92–115. PubMed PMC
Mourier T., Nielsen L.P., Hansen A.J., Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front. Gen. 2014;5(156):1–8. PubMed PMC