Bio-mining of Lanthanides from Red Mud by Green Microalgae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Interreg V-A ATCZ172
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1416
National Program of Sustainability I.
PubMed
30959876
PubMed Central
PMC6480188
DOI
10.3390/molecules24071356
PII: molecules24071356
Knihovny.cz E-zdroje
- Klíčová slova
- bio-mining, lanthanides, microalgae, recovery, red mud, toxicity,
- MeSH
- bioreaktory MeSH
- Chlamydomonas reinhardtii MeSH
- lanthanoidy * chemie MeSH
- mikrobiologické techniky MeSH
- mikrořasy * MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lanthanoidy * MeSH
Red mud is a by-product of alumina production containing lanthanides. Growth of green microalgae on red mud and the intracellular accumulation of lanthanides was tested. The best growing species was Desmodesmus quadricauda (2.71 cell number doublings/day), which accumulated lanthanides to the highest level (27.3 mg/kg/day), if compared with Chlamydomonas reinhardtii and Parachlorella kessleri (2.50, 2.37 cell number doublings and 24.5, 12.5 mg/kg per day, respectively). With increasing concentrations of red mud, the growth rate decreased (2.71, 2.62, 2.43 cell number doublings/day) due to increased shadowing of cells by undissolved red mud particles. The accumulated lanthanide content, however, increased in the most efficient alga Desmodesmus quadricauda within 2 days from zero in red-mud free culture to 12.4, 39.0, 54.5 mg/kg of dry mass at red mud concentrations of 0.03, 0.05 and 0.1%, respectively. Red mud alleviated the metal starvation caused by cultivation in incomplete nutrient medium without added microelements. Moreover, the proportion of lanthanides in algae grown in red mud were about 250, 138, 117% higher than in culture grown in complete nutrient medium at red mud concentrations of 0.03, 0.05, 0.1%. Thus, green algae are prospective vehicles for bio-mining or bio-leaching of lanthanides from red mud.
Zobrazit více v PubMed
Zhu Z.Z., Wang Z.L., Li J., Li Y., Zhang Z.G., Zhang P. Distribution of rare earth elements in sewage-irrigated soil profiles in Tianjin, China. J. Rare Earths. 2012;30:609–613.
European Commission Study on the Review of the List of Critical Raw Materials. Critical Raw Materials Factsheets. Catalogue Number ET-04-15-307-ENN. [(accessed on 15 May 2018)];2017 Available online: https://publications.europa.eu/en/publication-detail/-/publication/7345e3e8-98fc-11e7-b92d-01aa75ed71a1/language-en.
Evans K. The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metallurgy. 2016;2:316–331. doi: 10.1007/s40831-016-0060-x. DOI
Wang W.W., Pranolo Y., Cheng C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Separ. Purif. Technol. 2013;108:96–102. doi: 10.1016/j.seppur.2013.02.001. DOI
Ujaczki E., Feigl V., Molnar M., Cusack P., Curtin T., Courtney R., O’Donoghue L., Davris P., Hugi C., Evangelou M.W., et al. Re-using bauxite residues: Benefits beyond (critical raw) material recovery. J. Chem. Technol. Biotechnol. 2018;93:2498–2510. PubMed PMC
Cusack P.B., Courtney R., Healy M.G., O’Donoghue L.M.T., Ujaczki E. An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. J. Clean. Prod. 2019;208:393–401. doi: 10.1016/j.jclepro.2018.10.083. DOI
Liu Y.J., Naidu R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014;34:2662–2673. doi: 10.1016/j.wasman.2014.09.003. PubMed DOI
Borra C.R., Blanpain B., Pontikes Y., Binnemans K., Van Gerven T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. J. Sustain. Metall. 2016;2:365–386. doi: 10.1007/s40831-016-0068-2. DOI
Borra C.R., Pontikes Y., Binnemans K., Van Gerven T. Leaching of rare earths from bauxite residue (red mud) Miner. Eng. 2015;76:20–27.
Abreu R.D., Morais C.A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner. Eng. 2010;23:536–540. doi: 10.1016/j.mineng.2010.03.010. DOI
Sethurajan M., van Hullebusch E.D., Nancharaiah Y.V. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J. Environ. Manag. 2018;211:138–153. doi: 10.1016/j.jenvman.2018.01.035. PubMed DOI
Pollmann K., Kutschke S., Matys S., Raff J., Hlawacek G., Lederer F.L. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol. Adv. 2018;36:1048–1062. doi: 10.1016/j.biotechadv.2018.03.006. PubMed DOI
Kaksonen A.H., Boxall N.J., Gumulya Y., Khaleque H.N., Morris C., Bohu T., Cheng K.Y., Usher K.M., Lakaniemi A.M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy. 2018;180:7–25. doi: 10.1016/j.hydromet.2018.06.018. DOI
Nancharaiah Y.V., Mohan S.V., Lens P.N.L. Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol. 2016;34:137–155. doi: 10.1016/j.tibtech.2015.11.003. PubMed DOI
Zhuang W.Q., Fitts J.P., Ajo-Franklin C.M., Maes S., Alvarez-Cohen L., Hennebel T. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015;33:327–335. doi: 10.1016/j.copbio.2015.03.019. PubMed DOI PMC
Johnson D.B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014;30:24–31. doi: 10.1016/j.copbio.2014.04.008. PubMed DOI
Minoda A., Sawada H., Suzuki S., Miyashita S., Inagaki K., Yamamoto T., Tsuzuki M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015;99:1513–1519. doi: 10.1007/s00253-014-6070-3. PubMed DOI
Park D.M., Reed D.W., Yung M.C., Eslamimanesh A., Lencka M.M., Anderko A., Fujita Y., Riman R.E., Navrotsky A., Jiao Y. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ. J. Sci. Technol. 2016;50:2735–2742. doi: 10.1021/acs.est.5b06129. PubMed DOI PMC
Qu Y., Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 2013;136:16–23. doi: 10.1016/j.biortech.2013.03.070. PubMed DOI
Qu Y., Lian B., Mo B.B., Liu C.Q. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy. 2013;136:71–77. doi: 10.1016/j.hydromet.2013.03.006. DOI
Horiike T., Yamashita M. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium. Appl. Environ. Microbiol. 2015;81:3062–3068. doi: 10.1128/AEM.00300-15. PubMed DOI PMC
Jacinto J., Henriques B., Duarte A.C., Vale C., Pereira E. Removal and recovery of critical rare elements from contaminated waters by living Gracilaria gracilis. J. Hazard. Mater. 2018;344:531–538. doi: 10.1016/j.jhazmat.2017.10.054. PubMed DOI
Ponou T., Wang L.P., Dodbiba G., Okaya K., Fujita T., Mitsuhashi K., Atarashi T., Satoh G., Noda M. Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J. Environ. Chem. 2014;2:1070–1081. doi: 10.1016/j.jece.2014.04.002. DOI
Dubey K., Dubey K.P. A study of the effect of red mud amendments on the growth of cyanobacterial species. Bioremed. J. 2011;15:133–139. doi: 10.1080/10889868.2011.598483. DOI
Kang L., Shen Z., Jin C. Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277. Chin. Sci. Bull. 2000;45:585–592. doi: 10.1007/BF02886032. DOI
Shen H., Ren Q.G., Mi Y., Shi X.F., Yao H.Y., Jin C.Z., Huang Y.Y., He W., Zhang J., Liu B. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods. Nucl. Instrum. Methods Phys. Res. Sect. B. 2002;189:506–510. doi: 10.1016/S0168-583X(01)01132-6. DOI
Guo A., Wang J., Li X., Zhu J., Reinert T., Heitmann J., Spemann D., Vogt J., Flagmeyer R.H., Butz T. Study of metal bioaccumulation by nuclear microscope analysis of algae fossils and living algae cells. Nucl. Instrum. Meth. Phys. Res. Sect. B. 2000:161–163.
Shen C.D., Xu J.R., Yu J.F. Effect of the rare earth element of Eu on the growth and chlorophyll content of Chlorella vulgaris. Freshw. Fish. 2003;33:23–26.
Řezanka T., Kaineder K., Mezricky D., Řezanka M., Bišová K., Zachleder V., Vítová M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth. Res. 2016;130:335–340. doi: 10.1007/s11120-016-0263-9. PubMed DOI
Brar A., Kumar M., Vivekanand V., Pareek N. Photoautotrophic microorganisms and bioremediation of industrial effluents: Current status and future prospects. 3 Biotech. 2017;7:1–8. doi: 10.1007/s13205-017-0600-5. PubMed DOI PMC
Olszewska J.P., Meharg A.A., Heal K.V., Carey M., Gunn I.D.M., Searle K.R., Winfield I.J., Spears B.M. Assessing the legacy of red mud pollution in a shallow freshwater lake: Arsenic accumulation and speciation in macrophytes. Environ. Sci. Technol. 2016;50:9044–9052. doi: 10.1021/acs.est.6b00942. PubMed DOI
EEC Council Directive 76/464/EEC on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community (Dangerous Substances Directive)–List II Substances. Off. J. Eur. Communities. 1976;L129:23–29.
Laguna C., Gonzalez F., Garcia-Balboa C., Ballester A., Blazquez M.L., Munoz J.A. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Miner. Eng. 2011;24:10–18. doi: 10.1016/j.mineng.2010.08.026. DOI
Schroda M., Hemme D., Muhlhaus T. The Chlamydomonas heat stress response. Plant. J. 2015;82:466–480. doi: 10.1111/tpj.12816. PubMed DOI
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka M.A., Raven J.A., editors. The Physiology of Microalgae. Springer International Publishing; Cham, Switzerland: Heidelberg, Germnay: New York, NY, USA: Dordrecht, the Netherlands: London, UK: 2016. pp. 3–46.
Umen J.G. Sizing up the cell cycle: Systems and quantitative approaches in Chlamydomonas. Curr. Opin. Plant Biol. 2018;46:96–103. doi: 10.1016/j.pbi.2018.08.003. PubMed DOI PMC
Vitova M., Bisova K., Kawano S., Zachleder V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 2015;33:1204–1218. doi: 10.1016/j.biotechadv.2015.04.012. PubMed DOI
Gonzalez V., Vignati D.A.L., Pons M.N., Montarges-Pelletier E., Bojic C., Giamberini L. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environ. Pollut. 2015;199:139–147. doi: 10.1016/j.envpol.2015.01.020. PubMed DOI
Yang G., Wilkinson K.J. Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii—Bioavailability of small organic complexes and role of hardness ions. Environ. Pollut. 2018;243:263–269. doi: 10.1016/j.envpol.2018.08.066. PubMed DOI
Mishra V.K., Upadhyay A.R., Pathak V., Tripathi B.D. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut. 2008;192:303–314. doi: 10.1007/s11270-008-9657-4. DOI
Goecke F., Aránguiz-Acuña A., Palacios M., Muñoz-Muga P., Rucki M., Vítová M. Latitudinal distribution of lanthanides contained in macroalgae in Chile: An inductively coupled plasma-mass spectrometric (ICP-MS) determination. J. Appl. Phycol. 2017;29:2117–2128. doi: 10.1007/s10811-017-1106-6. DOI
Qu K.M., Yuan Y., Xin F. Enhancement of 3 rare earth elements to Isochrysis galbana J. Fish. Sci. Chin. 1998;5:42–47.
Wang X., Sun H., Xu Z., Dai L., Li Z., Chen Y. The effects and bioconcentration of REE La and its EDTA complex on the growth of algae Chlorella vulgaris Beijerinck. J. Nanjing Univ. 1996;32:460–475. (In Chinese)
Ishii N., Tagami K., Uchida S. Removal of rare earth elements by algal flagellate Euglena gracilis. J. Alloys Compd. 2006;408–412:417–420. doi: 10.1016/j.jallcom.2004.12.105. DOI
Martinez M.E., Sanchez S., Jimenez J.M., El Yousfi F., Munoz L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Biores. Technol. 2000;73:263–272. doi: 10.1016/S0960-8524(99)00121-2. DOI
Kim G.Y., Yun Y.M., Shin H.S., Kim H.S., Han J.I. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production. Biores. Technol. 2015;196:235–240. doi: 10.1016/j.biortech.2015.07.091. PubMed DOI
Gee K.R., Brown K.A., Chen W.N., Bishop-Stewart J., Gray D., Johnson I. Chemical and physiological characterization of Fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000;27:97–106. doi: 10.1054/ceca.1999.0095. PubMed DOI
Liu C., Hong F.-S., Wu K., Ma H.-B., Zhang X.-G., Hong C.-J., Wu C., Gao F.-Q., Yang F., Zheng L., et al. Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem. Biophys. Res. Commun. 2006;342:36–43. doi: 10.1016/j.bbrc.2006.01.105. PubMed DOI
Liu M., Hasenstein K.H. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta. 2005;220:658–666. doi: 10.1007/s00425-004-1379-2. PubMed DOI
Hu Z.H., Richter H., Sparovek G., Schnug E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 2004;27:183–220. doi: 10.1081/PLN-120027555. DOI
Li X., Přibyl P., Bišová K., Kawano S., Cepák V., Zachleder V., Čížková M., Brányiková I., Vítová M. The microalga Parachlorella kessleri—A novel highly-efficient lipid producer. Biotechnol. Bioeng. 2013;110:97–107. doi: 10.1002/bit.24595. PubMed DOI
Kastori R., Maksimovic I., Zeremski-Skoric T., Putnik-Delic M. Rare earth elements: Yttrium and higher plants. Zbornik Matice Srpske za Prirodne Nauke. 2010:87–98. doi: 10.2298/ZMSPN1018087K. DOI
Wang X.P., Shan X.Q., Zhang S.Z., Wen B. Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal. Bioanal. Chem. 2003;376:913–917. doi: 10.1007/s00216-003-2014-y. PubMed DOI
Khan A.M., Abu Bakar N.K., Abu Bakar A.F., Ashraf M.A. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review. Environ. Sci. Pollut. Res. 2017;24:22764–22789. doi: 10.1007/s11356-016-7427-1. PubMed DOI
Squier T.C., Bigelow D.J., Fernandezbelda F.J., Demeis L., Inesi G. Calcium and lanthanide binding in the sarcoplasmic-reticulum atpase. J. Biol. Chem. 1990;265:13713–13720. PubMed
Brown P.H., Rathjen A.H., Graham R.D., Tribe D.E. Rare earth elements in biological systems. In: Gschneidner K.A., Eyring L., editors. Handbook on the Physics and Chemistry of Rare Earths. Elsevier; North Holland, The Netherland: 1990. pp. 423–452.
Goecke F., Jerez C., Zachleder V., Figueroa F.L., Bišová K., Řezanka T., Vítová M. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta) Front. Microbiol. 2015;6:2. doi: 10.3389/fmicb.2015.00002. PubMed DOI PMC
Vítová M., Bišová K., Hlavová M., Zachleder V., Rucki M., Čížková M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 2011;102:87–94. doi: 10.1016/j.aquatox.2011.01.003. PubMed DOI
Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Přibyl P., Zachleder V., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268–274. doi: 10.1016/j.biortech.2013.06.096. PubMed DOI
Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1960;46:83–91. doi: 10.1073/pnas.46.1.83. PubMed DOI PMC