Identification of a molecular gating determinant within the carboxy terminal region of Cav3.3 T-type channels
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CIHR - Canada
PubMed
30961646
PubMed Central
PMC6454634
DOI
10.1186/s13041-019-0457-0
PII: 10.1186/s13041-019-0457-0
Knihovny.cz E-zdroje
- Klíčová slova
- Cav3.3 channel, Electrophysiology, Gating, T-type channels,
- MeSH
- gating iontového kanálu * MeSH
- HEK293 buňky MeSH
- kinetika MeSH
- lidé MeSH
- sekvence aminokyselin MeSH
- vápníkové kanály - typ T metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CACNA1I protein, human MeSH Prohlížeč
- vápníkové kanály - typ T MeSH
The physiological functions controlled by T-type channels are intrinsically dependent on their gating properties, and alteration of T-type channel activity is linked to several human disorders. Therefore, it is essential to develop a clear understanding of the structural determinants responsible for the unique gating features of T-type channels. Here, we have investigated the specific role of the carboxy terminal region by creating a series a deletion constructs expressed in tsA-201 cells and analyzing them by patch clamp electrophysiology. Our data reveal that the proximal region of the carboxy terminus contains a structural determinant essential for shaping several gating aspects of Cav3.3 channels, including voltage-dependence of activation and inactivation, inactivation kinetics, and coupling between the voltage sensing and the pore opening of the channel. Altogether, our data are consistent with a model in which the carboxy terminus stabilizes the channel in a closed state.
Zobrazit více v PubMed
Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–161. doi: 10.1152/physrev.00018.2002. PubMed DOI
Perez-Reyes E, Cribbs LL, Daud A, et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature. 1998;391:896–900. doi: 10.1038/36110. PubMed DOI
Cribbs LL, Lee JH, Yang J, et al. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 1998;83:103–109. doi: 10.1161/01.RES.83.1.103. PubMed DOI
Lee JH, Daud AN, Cribbs LL, et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999;19:1912–1921. doi: 10.1523/JNEUROSCI.19-06-01912.1999. PubMed DOI PMC
Yunker AM, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW. Immunological characterization of T-type voltage-dependent calcium channel CaV3.1 (alpha 1G) and CaV3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development. Neuroscience. 2003;117:321–335. doi: 10.1016/S0306-4522(02)00936-3. PubMed DOI
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19:1895–1911. doi: 10.1523/JNEUROSCI.19-06-01895.1999. PubMed DOI PMC
McKay BE, McRory JE, Molineux ML, et al. Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci. 2006;24:2581–2594. doi: 10.1111/j.1460-9568.2006.05136.x. PubMed DOI
García-Delgado N, Velasco M, Sánchez-Soto C, Díaz-García CM, Hiriart M. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion. Front Endocrinol (Lausanne) 2018;9:40. doi: 10.3389/fendo.2018.00040. PubMed DOI PMC
Park JY, Ahn HJ, Gu JG, et al. Molecular identification of Ca2+ channels in human sperm. Exp Mol Med. 2003;35:285–292. doi: 10.1038/emm.2003.39. PubMed DOI
Deng J, He P, Zhong X, Wang Q, Li L, Song B. Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder. Urology. 2012;80:1389.e1–1389.e7. doi: 10.1016/j.urology.2012.07.031. PubMed DOI
Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta. 2013;1828:1572–1578. doi: 10.1016/j.bbamem.2012.07.028. PubMed DOI
Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–39. doi: 10.1016/j.biocel.2019.01.008. PubMed DOI
Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V. The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol. 1997;505:689–705. doi: 10.1111/j.1469-7793.1997.689ba.x. PubMed DOI PMC
Hughes SW, Cope DW, Blethyn KL, Crunelli V. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron. 2002;33:947–958. doi: 10.1016/S0896-6273(02)00623-2. PubMed DOI
Staes M, Talavera K, Klugbauer N, et al. The amino side of the C-terminus determines fast inactivation of the T-type calcium channel alpha1G. J Physiol. 2001;530:35–45. doi: 10.1111/j.1469-7793.2001.0035m.x. PubMed DOI PMC
Hamid J, Peloquin JB, Monteil A, Zamponi GW. Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV. Neuroscience. 2006;143:717–728. doi: 10.1016/j.neuroscience.2006.08.023. PubMed DOI
Kang HW, Park JY, Lee JH. Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel. Biochim Biophys Acta. 2008;1778:2740–2748. doi: 10.1016/j.bbamem.2008.08.002. PubMed DOI
Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E. I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One. 2008;3:e2976. doi: 10.1371/journal.pone.0002976. PubMed DOI PMC
Karmažínová M, Jašková K, Griac P, Perez-Reyes E, Lacinová Ľ. Contrasting the roles of the I-II loop gating brake in CaV3.1 and CaV3.3 calcium channels. Pflugers Arch. 2015;467:2519–2527. doi: 10.1007/s00424-015-1728-y. PubMed DOI
Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Neuron. 2005;46:891–904. doi: 10.1016/j.neuron.2005.05.011. PubMed DOI
Karmažínová M, Baumgart JP, Perez-Reyes E, Lacinová L. The voltage dependence of gating currents of the neuronal CA(v)3.3 channel is determined by the gating brake in the I-II loop. Pflugers Arch. 2011;461:461–468. doi: 10.1007/s00424-011-0937-2. PubMed DOI PMC
Astori S, Wimmer RD, Prosser HM, et al. The ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A. 2011;108:13823–13828. doi: 10.1073/pnas.1105115108. PubMed DOI PMC
Weiss N, Hameed S, Fernández-Fernández JM, et al. A ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem. 2012;287:2810–2818. doi: 10.1074/jbc.M111.290882. PubMed DOI PMC
Weiss N, Zamponi GW. Regulation of voltage-gated calcium channels by synaptic proteins. Adv Exp Med Biol. 2012;740:759–775. doi: 10.1007/978-94-007-2888-2_33. PubMed DOI
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82:24–45. doi: 10.1016/j.neuron.2014.03.016. PubMed DOI
Weiss N, Zamponi GW. Trafficking of neuronal calcium channels. Neuronal Signaling. 2017;1:NS20160003. doi: 10.1042/NS20160003. PubMed DOI PMC
Frazier CJ, Serrano JR, George EG, et al. Gating kinetics of the alpha1I T-type calcium channel. J Gen Physiol. 2001;118:457–470. doi: 10.1085/jgp.118.5.457. PubMed DOI PMC
Serrano JR, Perez-Reyes E, Jones SW. State-dependent inactivation of the alpha1G T-type calcium channel. J Gen Physiol. 1999;114:185–201. doi: 10.1085/jgp.114.2.185. PubMed DOI PMC
Lee N, Jeong S, Kim KC, et al. Ca2+ Regulation of Cav3.3 T-type Ca2+ Channel Is Mediated by Calmodulin. Mol Pharmacol. 2017;92:347–357. doi: 10.1124/mol.117.108530. PubMed DOI PMC