Spatial Variability of Antarctic Surface Snow Bacterial Communities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30972032
PubMed Central
PMC6443967
DOI
10.3389/fmicb.2019.00461
Knihovny.cz E-zdroje
- Klíčová slova
- Antarctic, Ellsworth Lake, biogeography, microbial diversity, relic DNA, snow,
- Publikační typ
- časopisecké články MeSH
It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish "no-go" protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment.
Arctic Geology University Centre in Svalbard Longyearbyen Norway
Bristol Glaciology Centre University of Bristol Bristol United Kingdom
British Antarctic Survey Natural Environment Research Council Cambridge United Kingdom
Centre for Polar Ecology University of South Bohemia in České Budějovice České Budějovice Czechia
Department of Environmental Sciences Western Norway University of Applied Sciences Bergen Norway
Institute of Oceanography Hellenic Centre for Marine Research Heraklion Greece
Zobrazit více v PubMed
Antony R., Sanyal A., Kapse N., Dhakephalkar P. K., Thamban M., Nair S. (2016). Microbial communities associated with Antarctic snow pack and their biogeochemical implications. PubMed DOI
Azzoni R. S., Tagliaferri I., Franzetti A., Mayer C., Lambrecht A., Compostella C., et al. (2018). Bacterial diversity in snow from mid-latitude mountain areas: alps, Eastern Anatolia, Karakoram and Himalaya.
Bertler N., Mayewski P. A., Aristarain A., Barrett P., Becagli S., Bernardo R., et al. (2005). Snow chemistry across Antarctica. DOI
Boetius A., Anesio A. M., Deming J. W., Mikucki J. A., Rapp J. Z. (2015). Microbial ecology of the cryosphere: sea ice and glacial habitats. PubMed DOI
Bohlander J., Scambos T. (2001).
Bottos E. M., Woo A. C., Zawar-Reza P., Pointing S. B., Cary S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. PubMed DOI PMC
Bulat S. A. (2016). Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. PubMed DOI
Cáceres M. D., Legendre P. (2009). Associations between species and groups of sites: indices and statistical inference. PubMed DOI
Callaghan T. V., Johansson M., Brown R. D., Groisman P. Y., Labba N., Radionov V., et al. (2011). Multiple effects of changes in Arctic snow cover. DOI
Cameron K. A., Hagedorn B., Dieser M., Christner B. C., Choquette K., Sletten R., et al. (2015). Diversity and potential sources of microbiota associated with snow on western portions of the G reenland I ce S heet. PubMed DOI
Caporaso J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight R. (2009). PyNAST: a flexible tool for aligning sequences to a template alignment. PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010a). QIIME allows analysis of high-throughput community sequencing data. PubMed DOI PMC
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. (2010b). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PubMed DOI PMC
Carini P., Marsden P. J., Leff J. W., Morgan E. E., Strickland M. S., Fierer N. (2017). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. PubMed DOI
Carpenter E. J., Lin S., Capone D. G. (2000). Bacterial activity in South Pole snow. PubMed DOI PMC
Chong C. W., Dunn M. J., Convey P., Tan G. A., Wong R. C., Tan I. K. (2009). Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. DOI
Chong C. W., Pearce D. A., Convey P., Tan G. A., Wong R. C., Tan I. K. (2010). High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. DOI
Christner B. C., Mosley-Thompson E., Thompson L. G., Zagorodnov V., Sandman K., Reeve J. N. (2000). Recovery and identification of viable bacteria immured in glacial ice. DOI
Cowan D. A., Chown S. L., Convey P., Tuffin M., Hughes K., Pointing S., et al. (2011). Non-indigenous microorganisms in the Antarctic: assessing the risks. PubMed DOI
Cuthbertson L., Amores-Arrocha H., Malard L. A., Els N., Sattler B., Pearce D. A. (2017). characterisation of arctic bacterial communities in the air above Svalbard. PubMed DOI PMC
Dixon P. (2003). VEGAN, a package of R functions for community ecology. DOI
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. PubMed DOI
Eveland J., Gooseff M. N., Lampkin D. J., Barrett J., Takacs-Vesbach C. (2013). Spatial and temporal patterns of snow accumulation and aerial ablation across the McMurdo Dry Valleys, Antarctica.
Fierer N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. PubMed DOI
Fierer N., Liu Z., Rodríguez-Hernández M., Knight R., Henn M., Hernandez M. T. (2008). Short-term temporal variability in airborne bacterial and fungal populations. PubMed DOI PMC
Filippidou S., Wunderlin T., Junier T., Jeanneret N., Dorador C., Molina V., et al. (2016). A combination of extreme environmental conditions favor the prevalence of endospore-forming firmicutes. PubMed DOI PMC
Fittipaldi M., Nocker A., Codony F. (2012). Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. PubMed DOI
France J., King M., Frey M., Erbland J., Picard G., Preunkert S., et al. (2011). Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen. DOI
Fretwell P., Pritchard H. D., Vaughan D. G., Bamber J., Barrand N., Bell R., et al. (2013). Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. DOI
Ganzert L., Bajerski F., Wagner D. (2014). Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. PubMed DOI
Green J., Bohannan B. J. (2006). Spatial scaling of microbial biodiversity. PubMed DOI
Guglielmin M., Evans C. J. E., Cannone N. (2008). Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). DOI
Harding T., Jungblut A. D., Lovejoy C., Vincent W. F. (2011). Microbes in High Arctic snow and implications for the cold biosphere. PubMed DOI PMC
Hell K., Edwards A., Zarsky J., Podmirseg S. M., Girdwood S., Pachebat J. A., et al. (2013). The dynamic bacterial communities of a melting High Arctic glacier snowpack. PubMed DOI PMC
Hodson A., Nowak A., Cook J., Sabacka M., Wharfe E., Pearce D., et al. (2017). Microbes influence the biogeochemical and optical properties of maritime Antarctic snow. DOI
Hughes K. A., Thompson A. (2004). Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. PubMed DOI
Jones H. (1999). The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. DOI
Kellogg C. A., Griffin D. W., Garrison V. H., Peak K. K., Royall N., Smith R. R., et al. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. DOI
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. PubMed DOI PMC
Kozich J., Schloss P., Baxter N., Jenior M., Koumpouras C. (2013).
Kuhn M. (2001). The nutrient cycle through snow and ice, a review. DOI
Lanzén A., Jørgensen S. L., Huson D. H., Gorfer M., Grindhaug S. H., Jonassen I., et al. (2012). CREST–classification resources for environmental sequence tags. PubMed DOI PMC
Larose C., Dommergue A., Vogel T. M. (2013). The dynamic arctic snow pack: an unexplored environment for microbial diversity and activity. PubMed DOI PMC
Lennon J. T., Muscarella M. E., Placella S. A., Lehmkuhl B. K. (2018). How, when, and where relic DNA affects microbial diversity. PubMed DOI PMC
Lopatina A., Medvedeva S., Shmakov S., Logacheva M. D., Krylenkov V., Severinov K. (2016). Metagenomic analysis of bacterial communities of Antarctic surface snow. PubMed DOI PMC
Maccario L., Vogel T. M., Larose C. (2014). Potential drivers of microbial community structure and function in Arctic spring snow. PubMed DOI PMC
Magoè T., Salzberg S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. PubMed DOI PMC
Makinson K., Pearce D., Hodgson D. A., Bentley M. J., Smith A. M., Tranter M., et al. (2016). Clean subglacial access: prospects for future deep hot-water drilling. PubMed DOI PMC
Margesin R., Zacke G., Schinner F. (2002). Characterization of heterotrophic microorganisms in alpine glacier cryoconite. DOI
Martiny J. B. H., Bohannan B. J., Brown J. H., Colwell R. K., Fuhrman J. A., Green J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. PubMed DOI
Masson-Delmotte V., Hou S., Ekaykin A., Jouzel J., Aristarain A., Bernardo R., et al. (2008). A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. DOI
McMurdie P. J., Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PubMed DOI PMC
Michaud L., Giudice A. L., Mysara M., Monsieurs P., Raffa C., Leys N., et al. (2014). Snow surface microbiome on the High Antarctic Plateau (DOME C). PubMed DOI PMC
Miteva V. (2008). “Bacteria in snow and glacier ice,” in DOI
Møller A. K., Søborg D. A., Abu Al-Soud W., Sørensen S. J., Kroer N. (2013). Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. DOI
Nocker A., Camper A. K. (2009). Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. PubMed DOI
Paulson J. N., Stine O. C., Bravo H. C., Pop M. (2013). Differential abundance analysis for microbial marker-gene surveys. PubMed DOI PMC
Pearce D., Magiopoulos I., Mowlem M., Tranter M., Holt G., Woodward J., et al. (2016). Microbiology: lessons from a first attempt at Lake Ellsworth. PubMed DOI
Pearce D. A., Alekhina I. A., Terauds A., Wilmotte A., Quesada A., Edwards A., et al. (2016). Aerobiology over Antarctica–a new initiative for atmospheric ecology. PubMed DOI PMC
Pearce D. A., Hughes K., Lachlan-Cope T., Harangozo S., Jones A. E. (2010). Biodiversity of air-borne microorganisms at Halley station, Antarctica. PubMed DOI
Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PubMed DOI PMC
Priscu J. C., Achberger A. M., Cahoon J. E., Christner B. C., Edwards R. L., Jones W. L., et al. (2013). A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. DOI
Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. PubMed DOI PMC
R Core Team (2013).
Rignot E., Mouginot J., Morlighem M., Seroussi H., Scheuchl B. (2014). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. DOI
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PubMed DOI PMC
Ruamps L. S., Nunan N., Chenu C. (2011). Microbial biogeography at the soil pore scale. PubMed DOI
Šantl-Temkiv T., Gosewinkel U., Starnawski P., Lever M., Finster K. (2018). Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. PubMed DOI
Siegert M., Kennicutt M. (2018). Governance of the exploration of subglacial antarctica. DOI
Siegert M. J., Makinson K., Blake D., Mowlem M., Ross N. (2014). An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. DOI
Siegert M. J., Priscu J. C., Alekhina I. A., Wadham J. L., Lyons W. B. (2016). PubMed PMC
Sjoling S., Cowan D. (2000). Presence of human-specific enteric micro-organisms in current and historic field camp sites.
Staley J. T., Gosink J. J. (1999). Poles apart: biodiversity and biogeography of sea ice bacteria. PubMed DOI
Tulaczyk S., Mikucki J. A., Siegfried M. R., Priscu J. C., Barcheck C. G., Beem L. H., et al. (2014). WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. DOI
Vavrus S. (2007). The role of terrestrial snow cover in the climate system. PubMed DOI PMC
Vincent W. F. (1988).
Vincent W. F. (2000). Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. DOI
Wunderlin T., Ferrari B., Power M. (2016). Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. PubMed DOI
Yergeau E., Newsham K. K., Pearce D. A., Kowalchuk G. A. (2007). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. PubMed DOI