Aerobiology Over Antarctica - A New Initiative for Atmospheric Ecology

. 2016 ; 7 () : 16. [epub] 20160216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26909068

The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic.

Aberystwyth University Aberystwyth UK

Arctic and Antarctic Research Institute Saint Petersburg Russia

Auckland University of Technology Auckland New Zealand

Australian Antarctic Division Kingston TAS Australia

Brigham Young University Provo UT USA

British Antarctic Survey Cambridge UK

Colorado State University Fort Collins CO USA

Department of Geosciences Princeton University Princeton NJ USA

Faculty of Health and Life Sciences Northumbria UniversityNewcastle upon Tyne UK; British Antarctic SurveyCambridge UK

German Aerospace Center Cologne Germany

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

Interdisciplinary Centre of Marine and Environmental Research University of Porto Porto Portugal

International Medical University Kuala Lumpur Malaysia

Korea Polar Research Institute Incheon South Korea

Laval University Québec QC Canada

NASA Ames Research Center Moffett Field CA USA

Northumbria University Newcastle upon Tyne UK

Rhodes University Grahamstown South Africa

Universidad Autónoma de Madrid Madrid Spain

Universidad de la República Montevideo Uruguay

Universidade de Sao Paulo Sao Paulo Brazil

Université Grenoble Alpes Grenoble France

University of Bristol Bristol UK

University of Innsbruck Innsbruck Austria

University of Liege Liège Belgium

University of Ljubljana Ljubljana Slovenia

University of South BohemiaČeské Budějovice Czech Republic; Institute of Botany of the Academy of Science of the Czech RepublicTřeboň Czech Republic

University of Waikato Hamilton New Zealand

Zobrazit více v PubMed

Amato P., Demeer F., Melaouhi A., Fontanella S., Martin-Biesse A. S., Sancelme M., et al. (2007). A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos. Chem. Phys. 7 4159–4169. 10.5194/acp-7-4159-2007 DOI

Bottos E. M., Woo A. C., Zawar-Reza P., Pointing S. B., Cary S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb. Ecol. 67 120–128. 10.1007/s00248-013-0296-y PubMed DOI PMC

Burrows S. M., Butler T., Jöckel P., Tost H., Kerkweg A., Pöschl U., et al. (2009). Bacteria in the global atmosphere – Part 2: modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9 9281–9297. 10.5194/acp-9-9281-2009 DOI

Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6 1621–1624. 10.1038/ismej.2012.8 PubMed DOI PMC

Cowan D. A., Chown S. L., Convey P., Tuffin M., Hughes K. A., Pointing S., et al. (2011). Non-indigenous microorganisms in the Antarctic – assessing the risks. Trends Microbiol. 19 540–548. 10.1016/j.tim.2011.07.008 PubMed DOI

Durand K. T., Muilenberg M. L., Burge H. A., Seixas N. S. (2002). Effect of sampling time on the culturability of airborne fungi and bacteria sampled by filtration. Ann. occup. Hyg. 46 113–118. 10.1093/annhyg/mef007 PubMed DOI

Fierer N. (2008). “Microbial biogeography: patterns in microbial diversity across space and time,” in Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back, ed. Zengler K. (Washington DC: ASM Press; ).

Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103 626–631. 10.1073/pnas.0507535103 PubMed DOI PMC

Garcia-Mozo H., Galan C., Belmonte J., Bermejo D., Candau P., De La Guardia C. D., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric. For. Meteorol. 149 256–262. 10.1016/j.agrformet.2008.08.013 DOI

Griffin D. W., Gonzalez C., Teigell N., Petrosky T., Northrup D. E., Lyles M. (2011). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia 27 25–35. 10.1007/s10453-010-9173-z DOI

Hughes K. A., Fretwell P., Rae J., Holmes K., Fleming A. (2011). Untouched Antarctica: mapping a finite and diminishing environmental resource. Antarct. Sci. 23 537–548. 10.1017/S095410201100037X DOI

Hughes K. A., McCartney H. A., Lachlan-Cope T. A., Pearce D. A. (2004). A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell. Mol. Biol. 50 537–542. PubMed

IPCC (2012). “IPCC, 2012: summary for policymakers,” in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, eds Field C. B., Barros V. Stocker T. F. Qin D. Dokken D. J. Ebi K. L. (Cambridge: Cambridge University Press; ), 1–19.

King A. J., Freeman K. R., McCormick K. F., Lynchet R. C., Lozuponeal C., Knight R., et al. (2010). Biogeography and habitat modelling of high-alpine bacteria. Nat. Commun. 1 53 10.1038/ncomms1055 PubMed DOI

Litchman E. (2010). Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13 1560–1572. 10.1111/j.1461-0248.2010.01544.x PubMed DOI

Lutz S., Anesio A. M., Edwards A., Benning L. G. (2015). Microbial diversity on Icelandic glaciers and ice caps. Front. Microbiol. 6:307 10.3389/fmicb.2015.00307 PubMed DOI PMC

Maccario L., Vogel T. M., Larose C. (2014). Potential drivers of microbial community structure and function in Arctic spring snow. Front. Microbiol. 5:413 10.3389/fmicb.2014.00413 PubMed DOI PMC

Marshall W. A. (1996). Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol. 134 523–530. 10.1111/j.1469-8137.1996.tb04370.x DOI

Martiny J. B. H., Bohannan B. J. M., Brown J. H., Colwell R. K., Fuhrman J. A., Green J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4 102–112. 10.1038/nrmicro1341 PubMed DOI

Möhler O., DeMott P. J., Vali G., Levin Z. (2007). Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4 1059–1071. 10.5194/bg-4-1059-2007 DOI

O’Malley M. A. (2007). The nineteenth century roots of ‘everything is everywhere.’ Nat. Rev. Microbiol. 5 647–651. 10.1038/nrmicro1711 PubMed DOI

Pearce D. A., Hughes K. A., Lachlan-Cope T., Harangozo S. A., Jones A. E. (2010). Biodiversity of airborne microorganisms at Halley Station, Antarctica. Extremophiles 14 145–159. 10.1007/s00792-009-0293-8 PubMed DOI

Sattler B., Puxbaum H., Psenner R. (2001). Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28 239–242. 10.1029/2000GL011684 DOI

Siegert M. J., Barrett P., Deconto R., Dunbar R., O’ Cofaigh C., Passchier S., et al. (2008). Recent advances in understanding Antarctic climate evolution. Antarct. Sci 4 313–325.

Smith D. J., Jaffe D. A., Birmele M. N., Griffin D. W., Schuerger A. C., Hee J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microb. Ecol. 64 973–985. 10.1007/s00248-012-0088-9 PubMed DOI

Smith D. J., Timonen H. J., Jaffe D. A., Griffin D. W., Birmele M. N., Perry K. D., et al. (2013). Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79 279–290. 10.1128/AEM.03029-12 PubMed DOI PMC

Vaïtilingom M., Deguillaume L., Vinatier V., Sancelme M., Amato P., Chaumerliac N., et al. (2013). Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. U.S.A. 110 559–564. 10.1073/pnas.1205743110 PubMed DOI PMC

Vincent W. F. (2000). Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct. Sci. 12 374–385. 10.1017/S0954102000000420 DOI

Westbrook J. (2010). “Aerobiology,” in Guide to Agricultural Meteorological Practices, ed. Organization W. M. (Geneva: WMO Publications; ).

Wilkinson D. M., Koumoutsaris S., Mitchell E. A., Bey I. (2012). Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 39 89–97. 10.1111/j.1365-2699.2011.02569.x DOI

Womack A. M., Bohannan B. J., Green J. L. (2010). Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 365 3645–3653. 10.1098/rstb.2010.0283 PubMed DOI PMC

Woo A. C., Brar M. S., Chan Y., Lau M. C. Y., Leung F. C. C., Scott J. A., et al. (2013). Temporal variation in airborne microbial populations and microbially- derived allergens in a tropical urban landscape. Atmos. Environ. 74 291–300.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spatial Variability of Antarctic Surface Snow Bacterial Communities

. 2019 ; 10 () : 461. [epub] 20190326

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...