Aerobiology Over Antarctica - A New Initiative for Atmospheric Ecology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26909068
PubMed Central
PMC4754734
DOI
10.3389/fmicb.2016.00016
Knihovny.cz E-zdroje
- Klíčová slova
- Antarctica, aerobiology, biodiversity, biogeography, metadata,
- Publikační typ
- časopisecké články MeSH
The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic.
Aberystwyth University Aberystwyth UK
Arctic and Antarctic Research Institute Saint Petersburg Russia
Auckland University of Technology Auckland New Zealand
Australian Antarctic Division Kingston TAS Australia
Brigham Young University Provo UT USA
British Antarctic Survey Cambridge UK
Colorado State University Fort Collins CO USA
Department of Geosciences Princeton University Princeton NJ USA
German Aerospace Center Cologne Germany
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany
Interdisciplinary Centre of Marine and Environmental Research University of Porto Porto Portugal
International Medical University Kuala Lumpur Malaysia
Korea Polar Research Institute Incheon South Korea
Laval University Québec QC Canada
NASA Ames Research Center Moffett Field CA USA
Northumbria University Newcastle upon Tyne UK
Rhodes University Grahamstown South Africa
Universidad Autónoma de Madrid Madrid Spain
Universidad de la República Montevideo Uruguay
Universidade de Sao Paulo Sao Paulo Brazil
Université Grenoble Alpes Grenoble France
University of Bristol Bristol UK
University of Innsbruck Innsbruck Austria
University of Liege Liège Belgium
Zobrazit více v PubMed
Amato P., Demeer F., Melaouhi A., Fontanella S., Martin-Biesse A. S., Sancelme M., et al. (2007). A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos. Chem. Phys. 7 4159–4169. 10.5194/acp-7-4159-2007 DOI
Bottos E. M., Woo A. C., Zawar-Reza P., Pointing S. B., Cary S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb. Ecol. 67 120–128. 10.1007/s00248-013-0296-y PubMed DOI PMC
Burrows S. M., Butler T., Jöckel P., Tost H., Kerkweg A., Pöschl U., et al. (2009). Bacteria in the global atmosphere – Part 2: modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9 9281–9297. 10.5194/acp-9-9281-2009 DOI
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6 1621–1624. 10.1038/ismej.2012.8 PubMed DOI PMC
Cowan D. A., Chown S. L., Convey P., Tuffin M., Hughes K. A., Pointing S., et al. (2011). Non-indigenous microorganisms in the Antarctic – assessing the risks. Trends Microbiol. 19 540–548. 10.1016/j.tim.2011.07.008 PubMed DOI
Durand K. T., Muilenberg M. L., Burge H. A., Seixas N. S. (2002). Effect of sampling time on the culturability of airborne fungi and bacteria sampled by filtration. Ann. occup. Hyg. 46 113–118. 10.1093/annhyg/mef007 PubMed DOI
Fierer N. (2008). “Microbial biogeography: patterns in microbial diversity across space and time,” in Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back, ed. Zengler K. (Washington DC: ASM Press; ).
Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103 626–631. 10.1073/pnas.0507535103 PubMed DOI PMC
Garcia-Mozo H., Galan C., Belmonte J., Bermejo D., Candau P., De La Guardia C. D., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric. For. Meteorol. 149 256–262. 10.1016/j.agrformet.2008.08.013 DOI
Griffin D. W., Gonzalez C., Teigell N., Petrosky T., Northrup D. E., Lyles M. (2011). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia 27 25–35. 10.1007/s10453-010-9173-z DOI
Hughes K. A., Fretwell P., Rae J., Holmes K., Fleming A. (2011). Untouched Antarctica: mapping a finite and diminishing environmental resource. Antarct. Sci. 23 537–548. 10.1017/S095410201100037X DOI
Hughes K. A., McCartney H. A., Lachlan-Cope T. A., Pearce D. A. (2004). A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell. Mol. Biol. 50 537–542. PubMed
IPCC (2012). “IPCC, 2012: summary for policymakers,” in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, eds Field C. B., Barros V. Stocker T. F. Qin D. Dokken D. J. Ebi K. L. (Cambridge: Cambridge University Press; ), 1–19.
King A. J., Freeman K. R., McCormick K. F., Lynchet R. C., Lozuponeal C., Knight R., et al. (2010). Biogeography and habitat modelling of high-alpine bacteria. Nat. Commun. 1 53 10.1038/ncomms1055 PubMed DOI
Litchman E. (2010). Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13 1560–1572. 10.1111/j.1461-0248.2010.01544.x PubMed DOI
Lutz S., Anesio A. M., Edwards A., Benning L. G. (2015). Microbial diversity on Icelandic glaciers and ice caps. Front. Microbiol. 6:307 10.3389/fmicb.2015.00307 PubMed DOI PMC
Maccario L., Vogel T. M., Larose C. (2014). Potential drivers of microbial community structure and function in Arctic spring snow. Front. Microbiol. 5:413 10.3389/fmicb.2014.00413 PubMed DOI PMC
Marshall W. A. (1996). Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol. 134 523–530. 10.1111/j.1469-8137.1996.tb04370.x DOI
Martiny J. B. H., Bohannan B. J. M., Brown J. H., Colwell R. K., Fuhrman J. A., Green J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4 102–112. 10.1038/nrmicro1341 PubMed DOI
Möhler O., DeMott P. J., Vali G., Levin Z. (2007). Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4 1059–1071. 10.5194/bg-4-1059-2007 DOI
O’Malley M. A. (2007). The nineteenth century roots of ‘everything is everywhere.’ Nat. Rev. Microbiol. 5 647–651. 10.1038/nrmicro1711 PubMed DOI
Pearce D. A., Hughes K. A., Lachlan-Cope T., Harangozo S. A., Jones A. E. (2010). Biodiversity of airborne microorganisms at Halley Station, Antarctica. Extremophiles 14 145–159. 10.1007/s00792-009-0293-8 PubMed DOI
Sattler B., Puxbaum H., Psenner R. (2001). Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28 239–242. 10.1029/2000GL011684 DOI
Siegert M. J., Barrett P., Deconto R., Dunbar R., O’ Cofaigh C., Passchier S., et al. (2008). Recent advances in understanding Antarctic climate evolution. Antarct. Sci 4 313–325.
Smith D. J., Jaffe D. A., Birmele M. N., Griffin D. W., Schuerger A. C., Hee J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microb. Ecol. 64 973–985. 10.1007/s00248-012-0088-9 PubMed DOI
Smith D. J., Timonen H. J., Jaffe D. A., Griffin D. W., Birmele M. N., Perry K. D., et al. (2013). Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79 279–290. 10.1128/AEM.03029-12 PubMed DOI PMC
Vaïtilingom M., Deguillaume L., Vinatier V., Sancelme M., Amato P., Chaumerliac N., et al. (2013). Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. U.S.A. 110 559–564. 10.1073/pnas.1205743110 PubMed DOI PMC
Vincent W. F. (2000). Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct. Sci. 12 374–385. 10.1017/S0954102000000420 DOI
Westbrook J. (2010). “Aerobiology,” in Guide to Agricultural Meteorological Practices, ed. Organization W. M. (Geneva: WMO Publications; ).
Wilkinson D. M., Koumoutsaris S., Mitchell E. A., Bey I. (2012). Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 39 89–97. 10.1111/j.1365-2699.2011.02569.x DOI
Womack A. M., Bohannan B. J., Green J. L. (2010). Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 365 3645–3653. 10.1098/rstb.2010.0283 PubMed DOI PMC
Woo A. C., Brar M. S., Chan Y., Lau M. C. Y., Leung F. C. C., Scott J. A., et al. (2013). Temporal variation in airborne microbial populations and microbially- derived allergens in a tropical urban landscape. Atmos. Environ. 74 291–300.