Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MINIATURA 6
National Science Centre
UPB No. 12
Ministry of Science and Higher Education
PubMed
41153377
PubMed Central
PMC12564665
DOI
10.3390/genes16101160
PII: genes16101160
Knihovny.cz E-zdroje
- Klíčová slova
- MCT1, Wingate, genotype, lactate kinetics, polymorphisms,
- MeSH
- cvičení * fyziologie MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus * MeSH
- kinetika MeSH
- kyselina mléčná * krev MeSH
- lidé MeSH
- mladý dospělý MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus MeSH
- průřezové studie MeSH
- sportovci MeSH
- symportéry * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná * MeSH
- monocarboxylate transport protein 1 MeSH Prohlížeč
- přenašeče monokarboxylových kyselin * MeSH
- symportéry * MeSH
BACKGROUND/OBJECTIVES: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, rs12028967, rs10857983, rs3789592, rs10776763, rs1049434, rs6537765, rs7556664, rs7169) in relation to LA metabolism. METHODS: 337 Polish and Czech males (elite athletes, sub-elite competitors, physically active controls) performed two maximal Wingate tests. Buccal swabs were collected for DNA extraction and single nucleotide polymorphism (SNP) genotyping. LA was assessed before and after the tests. RESULTS: Five variants (rs3789592, rs7556664, rs7169, rs1049434, rs6537765) remained significantly associated with LA measured 30 min after the second Wingate (LA30') and delta clearance capacity (DCC) in elites (codominant and recessive models: p = 0.01-0.03; false discovery rate (FDR)-adjusted p = 0.02-0.04). Rs10776763 showed the broadest associations, surviving FDR for LA30' in all models (p = 0.003-0.03; FDR-adjusted p = 0.01-0.03) and for LA accumulation capacity (ACC) in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Rs12028967 also supported a clearance role, with LA30' significant in elites (p = 0.004; FDR-adjusted p = 0.01) and DCC in the overall cohort (p = 0.02; FDR-adjusted p = 0.03). In contrast, rs4301628 and rs10857983 demonstrated isolated LA30' effects in elites (p = 0.004-0.01; FDR-adjusted p = 0.01), and no production-phase endpoint other than rs10776763 survived FDR; ACC remained significant in the recessive model (p = 0.01; FDR-adjusted p = 0.03). CONCLUSIONS: The results suggest that MCT1 polymorphisms contribute to differences in LA metabolism and warrant replication in larger, more diverse cohorts.
Department of Laboratory Diagnostics Military Institute of Aviation Medicine 01 755 Warsaw Poland
Department of Medical Sciences and Public Health University of Cagliari 72 09124 Cagliari Italy
Faculty of Animal Genetics and Conservation Warsaw University of Life Sciences 02 787 Warsaw Poland
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faculty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
Zobrazit více v PubMed
Mastalerz A., Johne M., Mróz A., Bojarczuk A., Stastny P., Petr M., Kolinger D., Pisz A., Vostatkova P., Maculewicz E. Changes of Anaerobic Power and Lactate Concentration Following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters. J. Hum. Kinet. 2024;91:165–174. doi: 10.5114/jhk/186074. PubMed DOI PMC
Maculewicz E., Mastalerz A., Garbacz A., Mróz A., Stastny P., Petr M., Kolinger D., Vostatková P., Bojarczuk A. The interactions between monocarboxylate transporter genes MCT1, MCT2, and MCT4 and the kinetics of blood lactate production and removal after high-intensity efforts in elite males: A cross-sectional study. BMC Genom. 2025;26:133. doi: 10.1186/s12864-025-11307-4. PubMed DOI PMC
Menzies P., Menzies C., McIntyre L., Paterson P., Wilson J., Kemi O.J. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010;28:975–982. doi: 10.1080/02640414.2010.481721. PubMed DOI
Devlin J., Paton B., Poole L., Sun W., Ferguson C., Wilson J., Kemi O.J. Blood lactate clearance after maximal exercise depends on active recovery intensity. J. Sports Med. Phys. Fitness. 2014;54:271–278. PubMed
Thomas C., Perrey S., Lambert K., Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J. Appl. Physiol. 2005;98:804–809. doi: 10.1152/japplphysiol.01057.2004. PubMed DOI PMC
Huang T., Liang Z., Wang K., Miao X., Zheng L. Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: A comprehensive review. Front. Physiol. 2025;16:1459717. doi: 10.3389/fphys.2025.1459717. PubMed DOI PMC
Gurovich A.N., Heiser B., Hayes C., Marshall E., Roath S., Kabous N.G. Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients with Coronary Artery Disease. Cardiopulm. Phys. Ther. J. 2018;29:144–151. doi: 10.1097/CPT.0000000000000082. DOI
Faude O., Kindermann W., Meyer T. Lactate threshold concepts: How valid are they? Sport Med. 2009;39:469–490. doi: 10.2165/00007256-200939060-00003. PubMed DOI
Goodwin M.L., Harris J.E., Hernández A., Gladden L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007;1:558–569. doi: 10.1177/193229680700100414. PubMed DOI PMC
Ahmetov I.I., Fedotovskaya O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015;70:247–314. PubMed
Sawczuk M., Banting L.K., Cieszczyk P., Maciejewska-Karłowska A., Zarebska A., Leońska-Duniec A., Jastrzębski Z., Bishop D.J., Eynon N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport. 2015;18:114–118. doi: 10.1016/j.jsams.2013.12.008. PubMed DOI
Kikuchi N., Fuku N., Matsumoto R., Matsumoto S., Murakami H., Miyachi M., Nakazato K. The Association Between MCT1 T1470A Polymorphism and Power-Oriented Athletic Performance. Int. J. Sport Med. 2017;38:76–80. doi: 10.1055/s-0042-117113. PubMed DOI
Felmlee M.A., Jones R.S., Rodriguez-Cruz V., Follman K.E., Morris M.E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol. Rev. 2020;72:466–485. doi: 10.1124/pr.119.018762. PubMed DOI PMC
Halestrap A.P. The SLC16 gene family-Structure, role and regulation in health and disease. Mol. Asp. Med. 2013;34:337–349. doi: 10.1016/j.mam.2012.05.003. PubMed DOI
Jones R.S., Morris M.E. Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin. Pharmacol. Ther. 2016;100:454–463. doi: 10.1002/cpt.418. PubMed DOI PMC
Dzitkowska-Zabielska M., Bojarczuk A., Borczyk M., Piechota M., Korostyński M., Adamczyk J.G., Trybek G., Massidda M., Cięszczyk P. Transmission Distortion of MCT1 rs1049434 Among Polish Elite Athletes. Genes. 2022;13:870. doi: 10.3390/genes13050870. PubMed DOI PMC
Cupeiro R., González-Lamuño D., Amigo T., Peinado A.B., Ruiz J.R., Ortega F.B., Benito P.J. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J. Sci. Med. Sport. 2012;15:541–547. doi: 10.1016/j.jsams.2012.03.009. PubMed DOI
Cupeiro R., Benito P.J., Maffulli N., Calderón F.J., González-Lamuño D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J. Sci. Med. Sport. 2010;13:526–530. doi: 10.1016/j.jsams.2009.07.004. PubMed DOI
Massidda M., Mendez-Villanueva A., Ginevičienė V., Proia P., Drozdovska S.B., Dosenko V., Scorcu M., Stula A., Sawczuk M., Cięszczyk P., et al. Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status. Int. J. Sport Med. 2018;39:1028–1034. PubMed
Massidda M., Flore L., Kikuchi N., Scorcu M., Piras F., Cugia P., Cięszczyk P., Tocco F., Calò C.M. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: A pilot study. Eur. J. Appl. Physiol. 2021;121:3399–3408. doi: 10.1007/s00421-021-04797-z. PubMed DOI
Ben-Zaken S., Eliakim A., Nemet D., Rabinovich M., Kassem E., Meckel Y. Differences in MCT1 A1470T polymorphism prevalence between runners and swimmers. Scand. J. Med. Sci. Sport. 2015;25:365–371. doi: 10.1111/sms.12226. PubMed DOI
Cupeiro R., Pérez-Prieto R., Amigo T., Gortázar P., Redondo C., González-Lamuño D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur. J. Appl. Physiol. 2016;116:1005–1010. doi: 10.1007/s00421-016-3365-3. PubMed DOI
González-Haro C., Soria M., Vicente J., Fanlo A.J., Sinués B., Escanero J.F. Variants of the Solute Carrier SLC16A1 Gene (MCT1) Associated with Metabolic Responses During a Long-Graded Test in Road Cyclists. J. Strength Cond. Res. 2015;29:3494–3505. doi: 10.1519/JSC.0000000000000994. PubMed DOI
Fedotovskaya O.N., Mustafina L.J., Popov D.V., Vinogradova O.L., Ahmetov I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sport Physiol. Perform. 2014;9:173–180. doi: 10.1123/ijspp.2013-0026. PubMed DOI
Phan L., Zhang H., Wang Q., Villamarin R., Hefferon T., Ramanathan A., Kattman B. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025;53:D925–D931. doi: 10.1093/nar/gkae977. PubMed DOI PMC
Łacina P., Butrym A., Mazur G., Bogunia-Kubik K. BSG and MCT1 genetic variants influence survival in multiple myeloma patients. Genes. 2018;9:226. doi: 10.3390/genes9050226. PubMed DOI PMC
Guilherme J.P.L.F., Bosnyák E., Semenova E.A., Szmodis M., Griff A., Móra Á., Almási G., Trájer E., Udvardy A., Kostryukova E., et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport. 2021;38:465–474. doi: 10.5114/biolsport.2021.101638. PubMed DOI PMC
Piscina-Viúdez XRde la Álvarez-Herms J., Bonilla D.A., Castañeda-Babarro A., Larruskain J., Díaz-Ramírez J., Ahmetov I.I., Martínez-Ascensión A., Kreider R.B., Odriozola-Martínez A. Putative role of mct1 rs1049434 polymorphism in high-intensity endurance performance: Concept and basis to understand possible individualization stimulus. Sports. 2021;9:143. doi: 10.3390/sports9100143. PubMed DOI PMC
Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T., Fuku N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016;4:e13003. doi: 10.14814/phy2.13003. PubMed DOI PMC
Maculewicz E., Bojarczuk A., Mastalerz A., Johne M., Mróz A., Garbacz A., Stastny P. Associations Between Genetic Variants in MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) with Blood Lactate Kinetics Before and After Supramaximal Exercise. Int. J. Mol. Sci. 2025;26:7865. doi: 10.3390/ijms26167865. PubMed DOI PMC
Jorfeldt L., Juhlin-Dannfelt A., Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1978;44:350–352. doi: 10.1152/jappl.1978.44.3.350. PubMed DOI
Gladden L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC
Emhoff C.A.W., Messonnier L.A. Concepts of Lactate Metabolic Clearance Rate and Lactate Clamp for Metabolic Inquiry: A Mini-Review. Nutrients. 2023;15:3213. doi: 10.3390/nu15143213. PubMed DOI PMC
Watanabe T., Inaba T., van Rassel C.R., MacInnis M.J., Kakinoki K., Hatta H. Identifying physiological determinants of 800 m running performance using post-exercise blood lactate kinetics. Eur. J. Appl. Physiol. 2024;124:2951–2964. doi: 10.1007/s00421-024-05504-4. PubMed DOI PMC
Bangsbo J., Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol. Scand. 1998;162:305–312. doi: 10.1046/j.1365-201X.1998.0331e.x. PubMed DOI
Yeo G.W., Van Nostrand E.L., Liang T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 2007;3:e85. PubMed PMC
Shaul O. How introns enhance gene expression. Int. J. Biochem. Cell. Biol. 2017;91:145–155. doi: 10.1016/j.biocel.2017.06.016. PubMed DOI
GTEx Consortium GTEx Portal. 2025. [(accessed on 1 September 2025)]. Available online: https://gtexportal.org/home/
Zhao W., Blagev D., Pollack J.L., Erle D.J. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 2011;8:163–166. doi: 10.1513/pats.201007-054MS. PubMed DOI PMC
Zhang Z., Miteva M.A., Wang L., Alexov E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012;2012:805827. doi: 10.1155/2012/805827. PubMed DOI PMC
Li X., Yang Y., Zhang B., Lin X., Fu X., An Y., Zou Y., Wang J.-X., Wang Z., Yu T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022;7:305. doi: 10.1038/s41392-022-01151-3. PubMed DOI PMC
Adeva-Andany M., López-Ojén M., Funcasta-Calderón R., Ameneiros-Rodríguez E., Donapetry-García C., Vila-Altesor M., Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100. doi: 10.1016/j.mito.2014.05.007. PubMed DOI
Pan L., Ai S., Shi X., Tong X., Spanos M., Li G., Cretoiu D., Gao J., Zhou Q., Xiao J. ExerGeneDB: A physical exercise-regulated differential gene expression database. J. Sport Health Sci. 2025;14:101027. doi: 10.1016/j.jshs.2025.101027. PubMed DOI PMC
Struchalin M.V., Dehghan A., Witteman J.C.M., van Duijn C., Aulchenko Y.S. Variance heterogeneity analysis for detection of potentially interacting genetic loci: Method and its limitations. BMC Genet. 2010;11:92. doi: 10.1186/1471-2156-11-92. PubMed DOI PMC
Benítez-Muñoz J.A., Cupeiro R., Rubio-Arias J., Amigo T., González-Lamuño D. Exercise influence on monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in the skeletal muscle: A systematic review. Acta Physiol. 2024;240:e14083. doi: 10.1111/apha.14083. PubMed DOI
Smith E.S., McKay A.K.A., Kuikman M., Ackerman K.E., Harris R., Stellingwerff T., Burke L.M. Auditing the Representation of Female Versus Male Athletes in Sports Science and Sports Medicine Research: Evidence-Based Performance Supplements. Nutrients. 2022;14:953. doi: 10.3390/nu14050953. PubMed DOI PMC
Costello J.T., Bieuzen F., Bleakley C.M. Where are all the female participants in Sports and Exercise Medicine research? Eur. J. Sport Sci. 2014;14:847–851. doi: 10.1080/17461391.2014.911354. PubMed DOI
Mujika I., Taipale R.S. Sport Science on Women, Women in Sport Science. Int. J. Sport Physiol. Perform. 2019;14:1013–1014. doi: 10.1123/ijspp.2019-0514. PubMed DOI
Noordhof D.A., de Jonge X.A.J., Hackney A.C., de Koning J.J., Sandbakk Ø. Sport-Science Research on Female Athletes: Dealing with the Paradox of Concurrent Increases in Quantity and Quality. Int. J. Sports Physiol. Perform. 2022;17:993–994. doi: 10.1123/ijspp.2022-0185. PubMed DOI
Seldin M.F., Shigeta R., Villoslada P., Selmi C., Tuomilehto J., Silva G., Belmont J.W., Klareskog L., Gregersen P.K. European population substructure: Clustering of northern and southern populations. PLoS Genet. 2006;2:e143. doi: 10.1371/journal.pgen.0020143. PubMed DOI PMC
Metcalfe R.S., Babraj J.A., Fawkner S.G., Vollaard N.B.J. Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. Eur. J. Appl. Physiol. 2012;112:2767–2775. doi: 10.1007/s00421-011-2254-z. PubMed DOI
Esbjörnsson-Liljedahl M., Bodin K., Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J. Appl. Physiol. 2002;93:1075–1083. doi: 10.1152/japplphysiol.00732.1999. PubMed DOI
Esbjörnsson-Liljedahl M., Sundberg C.J., Norman B., Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999;87:1326–1332. doi: 10.1152/jappl.1999.87.4.1326. PubMed DOI
Gibala M.J., McGee S.L., Garnham A.P., Howlett K.F., Snow R.J., Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J. Appl. Physiol. 2009;106:929–934. doi: 10.1152/japplphysiol.90880.2008. PubMed DOI
Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 1999;277:E890–E900. doi: 10.1152/ajpendo.1999.277.5.E890. PubMed DOI