Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study

. 2025 Sep 30 ; 16 (10) : . [epub] 20250930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41153377

Grantová podpora
MINIATURA 6 National Science Centre
UPB No. 12 Ministry of Science and Higher Education

BACKGROUND/OBJECTIVES: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, rs12028967, rs10857983, rs3789592, rs10776763, rs1049434, rs6537765, rs7556664, rs7169) in relation to LA metabolism. METHODS: 337 Polish and Czech males (elite athletes, sub-elite competitors, physically active controls) performed two maximal Wingate tests. Buccal swabs were collected for DNA extraction and single nucleotide polymorphism (SNP) genotyping. LA was assessed before and after the tests. RESULTS: Five variants (rs3789592, rs7556664, rs7169, rs1049434, rs6537765) remained significantly associated with LA measured 30 min after the second Wingate (LA30') and delta clearance capacity (DCC) in elites (codominant and recessive models: p = 0.01-0.03; false discovery rate (FDR)-adjusted p = 0.02-0.04). Rs10776763 showed the broadest associations, surviving FDR for LA30' in all models (p = 0.003-0.03; FDR-adjusted p = 0.01-0.03) and for LA accumulation capacity (ACC) in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Rs12028967 also supported a clearance role, with LA30' significant in elites (p = 0.004; FDR-adjusted p = 0.01) and DCC in the overall cohort (p = 0.02; FDR-adjusted p = 0.03). In contrast, rs4301628 and rs10857983 demonstrated isolated LA30' effects in elites (p = 0.004-0.01; FDR-adjusted p = 0.01), and no production-phase endpoint other than rs10776763 survived FDR; ACC remained significant in the recessive model (p = 0.01; FDR-adjusted p = 0.03). CONCLUSIONS: The results suggest that MCT1 polymorphisms contribute to differences in LA metabolism and warrant replication in larger, more diverse cohorts.

Zobrazit více v PubMed

Mastalerz A., Johne M., Mróz A., Bojarczuk A., Stastny P., Petr M., Kolinger D., Pisz A., Vostatkova P., Maculewicz E. Changes of Anaerobic Power and Lactate Concentration Following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters. J. Hum. Kinet. 2024;91:165–174. doi: 10.5114/jhk/186074. PubMed DOI PMC

Maculewicz E., Mastalerz A., Garbacz A., Mróz A., Stastny P., Petr M., Kolinger D., Vostatková P., Bojarczuk A. The interactions between monocarboxylate transporter genes MCT1, MCT2, and MCT4 and the kinetics of blood lactate production and removal after high-intensity efforts in elite males: A cross-sectional study. BMC Genom. 2025;26:133. doi: 10.1186/s12864-025-11307-4. PubMed DOI PMC

Menzies P., Menzies C., McIntyre L., Paterson P., Wilson J., Kemi O.J. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 2010;28:975–982. doi: 10.1080/02640414.2010.481721. PubMed DOI

Devlin J., Paton B., Poole L., Sun W., Ferguson C., Wilson J., Kemi O.J. Blood lactate clearance after maximal exercise depends on active recovery intensity. J. Sports Med. Phys. Fitness. 2014;54:271–278. PubMed

Thomas C., Perrey S., Lambert K., Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J. Appl. Physiol. 2005;98:804–809. doi: 10.1152/japplphysiol.01057.2004. PubMed DOI PMC

Huang T., Liang Z., Wang K., Miao X., Zheng L. Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: A comprehensive review. Front. Physiol. 2025;16:1459717. doi: 10.3389/fphys.2025.1459717. PubMed DOI PMC

Gurovich A.N., Heiser B., Hayes C., Marshall E., Roath S., Kabous N.G. Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients with Coronary Artery Disease. Cardiopulm. Phys. Ther. J. 2018;29:144–151. doi: 10.1097/CPT.0000000000000082. DOI

Faude O., Kindermann W., Meyer T. Lactate threshold concepts: How valid are they? Sport Med. 2009;39:469–490. doi: 10.2165/00007256-200939060-00003. PubMed DOI

Goodwin M.L., Harris J.E., Hernández A., Gladden L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007;1:558–569. doi: 10.1177/193229680700100414. PubMed DOI PMC

Ahmetov I.I., Fedotovskaya O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015;70:247–314. PubMed

Sawczuk M., Banting L.K., Cieszczyk P., Maciejewska-Karłowska A., Zarebska A., Leońska-Duniec A., Jastrzębski Z., Bishop D.J., Eynon N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport. 2015;18:114–118. doi: 10.1016/j.jsams.2013.12.008. PubMed DOI

Kikuchi N., Fuku N., Matsumoto R., Matsumoto S., Murakami H., Miyachi M., Nakazato K. The Association Between MCT1 T1470A Polymorphism and Power-Oriented Athletic Performance. Int. J. Sport Med. 2017;38:76–80. doi: 10.1055/s-0042-117113. PubMed DOI

Felmlee M.A., Jones R.S., Rodriguez-Cruz V., Follman K.E., Morris M.E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol. Rev. 2020;72:466–485. doi: 10.1124/pr.119.018762. PubMed DOI PMC

Halestrap A.P. The SLC16 gene family-Structure, role and regulation in health and disease. Mol. Asp. Med. 2013;34:337–349. doi: 10.1016/j.mam.2012.05.003. PubMed DOI

Jones R.S., Morris M.E. Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clin. Pharmacol. Ther. 2016;100:454–463. doi: 10.1002/cpt.418. PubMed DOI PMC

Dzitkowska-Zabielska M., Bojarczuk A., Borczyk M., Piechota M., Korostyński M., Adamczyk J.G., Trybek G., Massidda M., Cięszczyk P. Transmission Distortion of MCT1 rs1049434 Among Polish Elite Athletes. Genes. 2022;13:870. doi: 10.3390/genes13050870. PubMed DOI PMC

Cupeiro R., González-Lamuño D., Amigo T., Peinado A.B., Ruiz J.R., Ortega F.B., Benito P.J. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J. Sci. Med. Sport. 2012;15:541–547. doi: 10.1016/j.jsams.2012.03.009. PubMed DOI

Cupeiro R., Benito P.J., Maffulli N., Calderón F.J., González-Lamuño D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J. Sci. Med. Sport. 2010;13:526–530. doi: 10.1016/j.jsams.2009.07.004. PubMed DOI

Massidda M., Mendez-Villanueva A., Ginevičienė V., Proia P., Drozdovska S.B., Dosenko V., Scorcu M., Stula A., Sawczuk M., Cięszczyk P., et al. Association of Monocarboxylate Transporter-1 (MCT1) A1470T Polymorphism (rs1049434) with Forward Football Player Status. Int. J. Sport Med. 2018;39:1028–1034. PubMed

Massidda M., Flore L., Kikuchi N., Scorcu M., Piras F., Cugia P., Cięszczyk P., Tocco F., Calò C.M. Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: A pilot study. Eur. J. Appl. Physiol. 2021;121:3399–3408. doi: 10.1007/s00421-021-04797-z. PubMed DOI

Ben-Zaken S., Eliakim A., Nemet D., Rabinovich M., Kassem E., Meckel Y. Differences in MCT1 A1470T polymorphism prevalence between runners and swimmers. Scand. J. Med. Sci. Sport. 2015;25:365–371. doi: 10.1111/sms.12226. PubMed DOI

Cupeiro R., Pérez-Prieto R., Amigo T., Gortázar P., Redondo C., González-Lamuño D. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery. Eur. J. Appl. Physiol. 2016;116:1005–1010. doi: 10.1007/s00421-016-3365-3. PubMed DOI

González-Haro C., Soria M., Vicente J., Fanlo A.J., Sinués B., Escanero J.F. Variants of the Solute Carrier SLC16A1 Gene (MCT1) Associated with Metabolic Responses During a Long-Graded Test in Road Cyclists. J. Strength Cond. Res. 2015;29:3494–3505. doi: 10.1519/JSC.0000000000000994. PubMed DOI

Fedotovskaya O.N., Mustafina L.J., Popov D.V., Vinogradova O.L., Ahmetov I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sport Physiol. Perform. 2014;9:173–180. doi: 10.1123/ijspp.2013-0026. PubMed DOI

Phan L., Zhang H., Wang Q., Villamarin R., Hefferon T., Ramanathan A., Kattman B. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025;53:D925–D931. doi: 10.1093/nar/gkae977. PubMed DOI PMC

Łacina P., Butrym A., Mazur G., Bogunia-Kubik K. BSG and MCT1 genetic variants influence survival in multiple myeloma patients. Genes. 2018;9:226. doi: 10.3390/genes9050226. PubMed DOI PMC

Guilherme J.P.L.F., Bosnyák E., Semenova E.A., Szmodis M., Griff A., Móra Á., Almási G., Trájer E., Udvardy A., Kostryukova E., et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport. 2021;38:465–474. doi: 10.5114/biolsport.2021.101638. PubMed DOI PMC

Piscina-Viúdez XRde la Álvarez-Herms J., Bonilla D.A., Castañeda-Babarro A., Larruskain J., Díaz-Ramírez J., Ahmetov I.I., Martínez-Ascensión A., Kreider R.B., Odriozola-Martínez A. Putative role of mct1 rs1049434 polymorphism in high-intensity endurance performance: Concept and basis to understand possible individualization stimulus. Sports. 2021;9:143. doi: 10.3390/sports9100143. PubMed DOI PMC

Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T., Fuku N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016;4:e13003. doi: 10.14814/phy2.13003. PubMed DOI PMC

Maculewicz E., Bojarczuk A., Mastalerz A., Johne M., Mróz A., Garbacz A., Stastny P. Associations Between Genetic Variants in MCT2 (rs3763980, rs995343, rs3763979) and MCT4 (rs11323780) with Blood Lactate Kinetics Before and After Supramaximal Exercise. Int. J. Mol. Sci. 2025;26:7865. doi: 10.3390/ijms26167865. PubMed DOI PMC

Jorfeldt L., Juhlin-Dannfelt A., Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1978;44:350–352. doi: 10.1152/jappl.1978.44.3.350. PubMed DOI

Gladden L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC

Emhoff C.A.W., Messonnier L.A. Concepts of Lactate Metabolic Clearance Rate and Lactate Clamp for Metabolic Inquiry: A Mini-Review. Nutrients. 2023;15:3213. doi: 10.3390/nu15143213. PubMed DOI PMC

Watanabe T., Inaba T., van Rassel C.R., MacInnis M.J., Kakinoki K., Hatta H. Identifying physiological determinants of 800 m running performance using post-exercise blood lactate kinetics. Eur. J. Appl. Physiol. 2024;124:2951–2964. doi: 10.1007/s00421-024-05504-4. PubMed DOI PMC

Bangsbo J., Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol. Scand. 1998;162:305–312. doi: 10.1046/j.1365-201X.1998.0331e.x. PubMed DOI

Yeo G.W., Van Nostrand E.L., Liang T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 2007;3:e85. PubMed PMC

Shaul O. How introns enhance gene expression. Int. J. Biochem. Cell. Biol. 2017;91:145–155. doi: 10.1016/j.biocel.2017.06.016. PubMed DOI

GTEx Consortium GTEx Portal. 2025. [(accessed on 1 September 2025)]. Available online: https://gtexportal.org/home/

Zhao W., Blagev D., Pollack J.L., Erle D.J. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 2011;8:163–166. doi: 10.1513/pats.201007-054MS. PubMed DOI PMC

Zhang Z., Miteva M.A., Wang L., Alexov E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012;2012:805827. doi: 10.1155/2012/805827. PubMed DOI PMC

Li X., Yang Y., Zhang B., Lin X., Fu X., An Y., Zou Y., Wang J.-X., Wang Z., Yu T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022;7:305. doi: 10.1038/s41392-022-01151-3. PubMed DOI PMC

Adeva-Andany M., López-Ojén M., Funcasta-Calderón R., Ameneiros-Rodríguez E., Donapetry-García C., Vila-Altesor M., Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100. doi: 10.1016/j.mito.2014.05.007. PubMed DOI

Pan L., Ai S., Shi X., Tong X., Spanos M., Li G., Cretoiu D., Gao J., Zhou Q., Xiao J. ExerGeneDB: A physical exercise-regulated differential gene expression database. J. Sport Health Sci. 2025;14:101027. doi: 10.1016/j.jshs.2025.101027. PubMed DOI PMC

Struchalin M.V., Dehghan A., Witteman J.C.M., van Duijn C., Aulchenko Y.S. Variance heterogeneity analysis for detection of potentially interacting genetic loci: Method and its limitations. BMC Genet. 2010;11:92. doi: 10.1186/1471-2156-11-92. PubMed DOI PMC

Benítez-Muñoz J.A., Cupeiro R., Rubio-Arias J., Amigo T., González-Lamuño D. Exercise influence on monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in the skeletal muscle: A systematic review. Acta Physiol. 2024;240:e14083. doi: 10.1111/apha.14083. PubMed DOI

Smith E.S., McKay A.K.A., Kuikman M., Ackerman K.E., Harris R., Stellingwerff T., Burke L.M. Auditing the Representation of Female Versus Male Athletes in Sports Science and Sports Medicine Research: Evidence-Based Performance Supplements. Nutrients. 2022;14:953. doi: 10.3390/nu14050953. PubMed DOI PMC

Costello J.T., Bieuzen F., Bleakley C.M. Where are all the female participants in Sports and Exercise Medicine research? Eur. J. Sport Sci. 2014;14:847–851. doi: 10.1080/17461391.2014.911354. PubMed DOI

Mujika I., Taipale R.S. Sport Science on Women, Women in Sport Science. Int. J. Sport Physiol. Perform. 2019;14:1013–1014. doi: 10.1123/ijspp.2019-0514. PubMed DOI

Noordhof D.A., de Jonge X.A.J., Hackney A.C., de Koning J.J., Sandbakk Ø. Sport-Science Research on Female Athletes: Dealing with the Paradox of Concurrent Increases in Quantity and Quality. Int. J. Sports Physiol. Perform. 2022;17:993–994. doi: 10.1123/ijspp.2022-0185. PubMed DOI

Seldin M.F., Shigeta R., Villoslada P., Selmi C., Tuomilehto J., Silva G., Belmont J.W., Klareskog L., Gregersen P.K. European population substructure: Clustering of northern and southern populations. PLoS Genet. 2006;2:e143. doi: 10.1371/journal.pgen.0020143. PubMed DOI PMC

Metcalfe R.S., Babraj J.A., Fawkner S.G., Vollaard N.B.J. Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. Eur. J. Appl. Physiol. 2012;112:2767–2775. doi: 10.1007/s00421-011-2254-z. PubMed DOI

Esbjörnsson-Liljedahl M., Bodin K., Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J. Appl. Physiol. 2002;93:1075–1083. doi: 10.1152/japplphysiol.00732.1999. PubMed DOI

Esbjörnsson-Liljedahl M., Sundberg C.J., Norman B., Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999;87:1326–1332. doi: 10.1152/jappl.1999.87.4.1326. PubMed DOI

Gibala M.J., McGee S.L., Garnham A.P., Howlett K.F., Snow R.J., Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J. Appl. Physiol. 2009;106:929–934. doi: 10.1152/japplphysiol.90880.2008. PubMed DOI

Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 1999;277:E890–E900. doi: 10.1152/ajpendo.1999.277.5.E890. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...