Biomechanical Behaviour and Biocompatibility of Ureidopyrimidinone-Polycarbonate Electrospun and Polypropylene Meshes in a Hernia Repair in Rabbits
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
BiP-UPy; NMP3-LA-2012-310389
European Commission: Seventh framework program
PubMed
30974868
PubMed Central
PMC6480159
DOI
10.3390/ma12071174
PII: ma12071174
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Although mesh use has significantly improved the outcomes of hernia and pelvic organ prolapse repair, long-term recurrence rates remain unacceptably high. We aim to determine the in vivo degradation and functional outcome of reconstructed abdominal wall defects, using slowly degradable electrospun ureidopyrimidinone moieties incorporated into a polycarbonate backbone (UPy-PC) implant compared to an ultra-lightweight polypropylene (PP) textile mesh with high pore stability. Twenty four New-Zealand rabbits were implanted with UPy-PC or PP to either reinforce a primary fascial defect repair or to cover (referred to as gap bridging) a full-thickness abdominal wall defect. Explants were harvested at 30, 90 and 180 days. The primary outcome measure was uniaxial tensiometry. Secondary outcomes were the recurrence of herniation, morphometry for musculofascial tissue characteristics, inflammatory response and neovascularization. PP explants compromised physiological abdominal wall compliance from 90 days onwards and UPy-PC from 180 days. UPy-PC meshes induced a more vigorous inflammatory response than PP at all time points. We observed progressively more signs of muscle atrophy and intramuscular fatty infiltration in the entire explant area for both mesh types. UPy-PC implants are replaced by a connective tissue stiff enough to prevent abdominal wall herniation in two-thirds of the gap-bridged full-thickness abdominal wall defects. However, in one-third there was sub-clinical herniation. The novel electrospun material did slightly better than the textile PP yet outcomes were still suboptimal. Further research should investigate what drives muscular atrophy, and whether novel polymers would eventually generate a physiological neotissue and can prevent failure and/or avoid collateral damage.
INEGI Faculdade de Engenharia da Universidade do Porto Universidade do Porto 4099 002 Porto Portugal
Pelvic Floor Unit University Hospitals KU Leuven 3000 Leuven Belgium
See more in PubMed
Flum D.R., Horvath K., Koepsell T. Have outcomes of incisional hernia repair improved with time? A population-based analysis. Ann. Surg. 2003;237:129–135. PubMed PMC
Christmann-Schmid C., Marjoribanks J., Maher C., Baessler K., Feiner B., Haya N. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2016;2:CD012079. PubMed PMC
Olsen A.L., Smith V.J., Bergstrom J.O., Colling J.C., Clark A.L. Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence. Am. Coll. Obstet. Gynecol. 1997;89:501–506. doi: 10.1016/S0029-7844(97)00058-6. PubMed DOI
Burger J.W.A., Luijendijk R.W., Hop W.C.J., Halm J.A., Verdaasdonk E.G.G., Jeekel J. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann. Surg. 2004;240:578–585. doi: 10.1097/01.sla.0000141193.08524.e7. PubMed DOI PMC
Todros S., Pavan P.G., Natali A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I—Materials and structural conformation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;105:689–699. PubMed
Klosterhalfen B., Junge K., Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Rev. Med. Devices. 2005;2:103–117. doi: 10.1586/17434440.2.1.103. PubMed DOI
Liang R., Abramowitch S., Knight K., Palcsey S., Nolfi A., Feola A., Stein S., Moalli P.A. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG Int. J. Obstet. Gynaecol. 2013;120:233–243. PubMed PMC
Junge K., Klinge U., Binnebösel M., Jansen P.L., Neumann U.P., von Trotha K.T., Rosch R. Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbeck’s Arch. Surg. 2011;397:255–270. PubMed
Brown C.N., Finch J.G. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010;92:272–278. doi: 10.1308/003588410X12664192076296. PubMed DOI PMC
Klinge U., Klosterhalfen B., Müller M., Schumpelick V. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur. J. Surg. 1999;165:665–673. PubMed
Maurer M.M., Röhrnbauer B., Feola A., Deprest J., Mazza E. Prosthetic meshes for repair of hernia and pelvic organ prolapse: Comparison of biomechanical properties. Materials. 2015;8:2794–2808.
Feola A., Abramowitch S., Jallah Z., Stein S., Barone W., Palcsey S., Moalli P. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG Int. J. Obstet. Gynaecol. 2013;120:224–232. PubMed PMC
Junge K., Klinge U., Prescher A., Giboni P., Niewiera M., Schumpelick V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia. 2001;5:113–118. PubMed
Deeken C.R., Lake S.P. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J. Mech. Behav. Biomed. Mater. 2017;74:411–427. doi: 10.1016/j.jmbbm.2017.05.008. PubMed DOI
Culbertson E.J., Xing L., Wen Y., Franz M.G. Reversibility of abdominal wall atrophy and fibrosis after primary or mesh herniorrhaphy. Ann. Surg. 2013;257:142–149. PubMed PMC
Deeken C.R., Eliason B.J., Pichert M.D., Grant S.A., Frisella M.M., Matthews B.D. Differentiation of biologic scaffold materials through physicomechanical, thermal, and enzymatic degradation techniques. Ann. Surg. 2012;255:595–604. PubMed
Scott J.R., Deeken C.R., Martindale R.G., Rosen M.J. Evaluation of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh in a porcine model of ventral hernia repair. Surg. Endosc. 2016;30:3691–3701. PubMed PMC
SCENIHR Opinion on The Safety of Surgical Meshes Used in Urogynecological Surgery. [(accessed on 5 October 2018)]; Available online: https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_049.pdf.
Elango S., Perumalsamy S., Ramachandran K., Vadodaria K. Mesh materials and hernia repair. BioMedicine. 2017;7:16. doi: 10.1051/bmdcn/2017070316. PubMed DOI PMC
Hympanova L., da Cunha M.G.M.C., Rynkevic R., Wach R.A., Olejnik A.K., Dankers P.Y.W., Arts B., Mes T., Bosman A.W., Albersen M. Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. J. Mech. Behav. Biomed. Mater. 2018;88:431–441. doi: 10.1016/j.jmbbm.2018.08.026. PubMed DOI
Webber M.J., Appel E.A., Meijer E.W., Langer R. Supramolecular biomaterials. Nat. Mater. 2015;15:13–26. doi: 10.1038/nmat4474. PubMed DOI
Vashaghian M., Ruiz-Zapata A.M., Kerkhof M.H., Zandieh-Doulabi B., Werner A., Roovers J.P., Smit T.H. Toward a New Generation of Pelvic Floor Implants With Electrospun Nanofibrous Matrices: A Feasibility Study. Neurourol. Urodyn. 2017;37:565–573. PubMed
Mollet B.B., Comellas-Aragonès M., Spiering A.J.H., Sontjens S.H.M., Meijer E.W., Dankers P.Y.W. A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J. Mater. Chem. B. 2014;2:2483–2493. PubMed
Hympanova L., Mori da Cunha M.G.M.C., Rynkevic R., Zündel M., Gallego M.R., Vange J., Callewaert G., Urbankova I., van der Aa F., Mazza E., et al. Physiologic musculofascial compliance following reinforcement with electrospun polycaprolactone-ureidopyrimidinone mesh in a rat model. J. Mech. Behav. Biomed. Mater. 2017;74:349–357. doi: 10.1016/j.jmbbm.2017.06.032. PubMed DOI
Hong Y., Guan J., Fujimoto K.L., Hashizume R., Anca L., Wagner W.R. Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials. 2011;31:4249–4258. PubMed PMC
Ma Z., Hong Y., Nelson D.M., Pichamuthu J.E., Leeson C.E., Wagner W.R. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules. 2011;12:3265–3274. PubMed PMC
Fukushima K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater. Sci. 2016;4:9–24. doi: 10.1039/C5BM00123D. PubMed DOI
Bennink G., Torii S., Brugmans M., Cox M., Svanidze O., Ladich E., Carrel T., Virmani R. A novel restorative pulmonary valved conduit in a chronic sheep model: Mid-term hemodynamic function and histologic assessment. J. Thorac. Cardiovasc. Surg. 2018;155:2591–2601. doi: 10.1016/j.jtcvs.2017.12.046. PubMed DOI
Konerding M.A., Bohn M., Wolloscheck T., Batke B., Holste J.L., Wohlert S., Trzewik J., Förstemann T., Hartung C. Maximum forces acting on the abdominal wall: Experimental validation of a theoretical modeling in a human cadaver study. Med. Eng. Phys. 2011;33:789–792. doi: 10.1016/j.medengphy.2011.01.010. PubMed DOI
Konerding M.A., Chantereau P., Delventhal V., Holste J.L., Ackermann M. Biomechanical and histological evaluation of abdominal wall compliance with intraperitoneal onlay mesh implants in rabbits: A comparison of six different state-of-the-art meshes. Med. Eng. Phys. 2012;34:806–816. doi: 10.1016/j.medengphy.2011.09.022. PubMed DOI
Boontheekul T., Hill E.E., Kong H.-J., Mooney D.J. Regulating Myoblast Phenotype Through Controlled Gel Stiffness and Degradation. Tissue Eng. 2007;13:1431–1442. doi: 10.1089/ten.2006.0356. PubMed DOI
Klinge U., Müller M., Brücker C., Schumpelick V. Application of three-dimensional stereography to assess abdominal wall mobility. Hernia. 2005;2:11–14. doi: 10.1007/BF01207767. DOI
Arbos M.A., Ferrando J.M., Quiles M.T., Vidal J., López-Cano M., Gil J., Manero J.M., Peña J., Huguet P., Schwartz-Riera S., et al. Improved surgical mesh integration into the rat abdominal wall with arginine administration. Biomaterials. 2006;27:758–768. doi: 10.1016/j.biomaterials.2005.06.027. PubMed DOI
Li Y., Chu Z., Li X., Ding X., Guo M., Zhao H., Yao J., Wang L., Cai Q., Fan Y. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regen. Biomater. 2017;4:179–190. doi: 10.1093/rb/rbx009. PubMed DOI PMC
Zaccaria S., van Gaal R.C., Riool M., Zaat S.A.J., Dankers P.Y.W. Antimicrobial peptide modification of biomaterials using supramolecular additives. J. Polym. Sci. Part A Polym. Chem. 2018;56:1926–1934. doi: 10.1002/pola.29078. PubMed DOI PMC
De Feijter I., Goor O.J., Hendrikse S.I., Comellas-Aragonès M., Söntjens S.H., Zaccaria S., Fransen P.P., Peeters J.W., Milroy L.G., Dankers P.Y. Solid-Phase-Based Synthesis of Ureidopyrimidinone-Peptide Conjugates for Supramolecular Biomaterials. Synlett. 2015;26:2707–2713.
Dankers P.Y.W. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: May, 2006. Supramolecular Biomaterials: Introducing a Modular Approach.
Sheikh Z., Brooks P.J., Barzilay O., Fine N., Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8:5671–5701. doi: 10.3390/ma8095269. PubMed DOI PMC
Brown B.N., Mani D., Nolfi A.L., Liang R., Abramowitch S.D., Moalli P.A. Characterization of the host inflammatory response following implantation of prolapse mesh in rhesus macaque. Am. J. Obstet. Gynecol. 2015;213:668.e1–668.e10. doi: 10.1016/j.ajog.2015.08.002. PubMed DOI PMC
Gao Y., Arfat Y., Wang H., Goswami N. Muscle atrophy induced by mechanical unloading: Mechanisms and potential countermeasures. Front. Physiol. 2018;9:235. doi: 10.3389/fphys.2018.00235. PubMed DOI PMC
Teixeira E., Duarte J.A. Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Med. 2016;46:783–792. PubMed
Uezumi A., Ito T., Morikawa D., Shimizu N., Yoneda T., Segawa M., Yamaguchi M., Ogawa R., Matev M.M., Miyagoe-Suzuki Y., et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 2011;124:3654–3664. doi: 10.1242/jcs.086629. PubMed DOI
Uezumi A., Fukada S.I., Yamamoto N., Takeda S., Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 2010;12:143–152. doi: 10.1038/ncb2014. PubMed DOI
Pagano A.F., Demangel R., Brioche T., Jublanc E., Bertrand-Gaday C., Candau R., Dechesne C.A., Dani C., Bonnieu A., Py G., et al. Muscle Regeneration with Intermuscular Adipose Tissue (IMAT) Accumulation Is Modulated by Mechanical Constraints. PLoS ONE. 2015;10:e0144230. doi: 10.1371/journal.pone.0144230. PubMed DOI PMC
Maeda E., Asanuma H., Noguchi H., Tohyama H., Yasuda K., Hayashi K. Effects of stress shielding and subsequent restressing on mechanical properties of regenerated and residual tissues in rabbit patellar tendon after resection of its central one-third. J. Biomech. 2009;42:1592–1597. doi: 10.1016/j.jbiomech.2009.04.039. PubMed DOI
Hamrick M.W., McGee-Lawrence M.E., Frechette D.M. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front. Endocrinol. 2016;7:69. doi: 10.3389/fendo.2016.00069. PubMed DOI PMC
Gladstone J.N., Bishop J.Y., Lo I.K.Y., Flatow E.L. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J. Sports Med. 2007;35:719–728. doi: 10.1177/0363546506297539. PubMed DOI
Bruce C.R., Dyck D.J. Cytokine regulation of skeletal muscle fatty acid metabolism: Effect of interleukin-6 and tumor necrosis factor-alpha. Am. J. Physiol. Endocrinol. Metab. 2004;287:E616–E621. doi: 10.1152/ajpendo.00150.2004. PubMed DOI
Petersen E.W. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Phys. Endocrinol. Metab. 2004;288:E155–E162. doi: 10.1152/ajpendo.00257.2004. PubMed DOI
Mutwali I. Incisional hernia: Risk factors, incidence, pathogenesis, prevention and complications. Sudan Med. Monit. 2014;9:81. doi: 10.4103/1858-5000.146580. DOI
Amato G., Agrusa A., Romano G., Salamone G., Gulotta G., Silvestri F., Bussani R. Muscle degeneration in inguinal hernia specimens. Hernia. 2012;16:327–331. doi: 10.1007/s10029-011-0890-1. PubMed DOI
Köckerling F., Koch A., Lorenz R., Schug-Pass C., Stechemesser B., Reinpold W. How Long Do We Need to Follow-Up Our Hernia Patients to Find the Real Recurrence Rate? Front. Surg. 2015;2:24. doi: 10.3389/fsurg.2015.00024. PubMed DOI PMC
Ozog Y., Konstantinovic M.L., Werbrouck E. Persistence of polypropylene mesh anisotropy after implantation: An experimental study. BJOG Int. J. Obstet. Gynaecol. 2011;118:1180–1185. doi: 10.1111/j.1471-0528.2011.03018.x. PubMed DOI