• This record comes from PubMed

Complex Analysis of Antioxidant Activity, Abscisic Acid Level, and Accumulation of Osmotica in Apple and Cherry In Vitro Cultures under Osmotic Stress

. 2021 Jul 25 ; 22 (15) : . [epub] 20210725

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Project No. RO1521 Ministry of Agriculture of the Czech Republic

Plant response to osmotic stress is a complex issue and includes a wide range of physiological and biochemical processes. Extensive studies of known cultivars and their reaction to drought or salinity stress are very important for future breeding of new and tolerant cultivars. Our study focused on the antioxidant activity, accumulations of osmotica, and the content of abscisic acid in apple (cv. "Malinové holovouské", "Fragrance", "Rubinstep", "Idared", "Car Alexander") and cherry (cv. "Regina", "Napoleonova", "Kaštánka", "Sunburst", "P-HL-C") cultivated in vitro on media containing different levels of polyethylene glycol PEG-6000. Our results indicated that the studied genotypes responded differently to osmotic stress manifested as reduction in the leaf relative water content (RWC) and increment in the activities of antioxidant enzymes, proline, sugars, and abscisic acid content. Overall, cherry cultivars showed a smaller decrease in percentage RWC and enzymatic activities, but enhanced proline content compared to the apple plants cultivars. Cultivars "Rubinstep", "Napoleonova", and "Kaštánka" exhibited higher antioxidant capacity and accumulation of osmoprotectants like proline and sorbitol that can be associated with the drought-tolerance system.

See more in PubMed

Santander C., Aroca R., Ruiz-Lozano J.M., Olave J., Cartes P., Borie F., Cornejo P. Arbuscular Mycorrhiza Effects on Plant Performance under Osmotic Stress. Mycorrhiza. 2017;27:639–657. doi: 10.1007/s00572-017-0784-x. PubMed DOI

Swapna S., Shylaraj K.S. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition. Rice Sci. 2017;24:253–263. doi: 10.1016/j.rsci.2017.04.004. DOI

Liang W., Ma X., Wan P., Liu L. Plant Salt-Tolerance Mechanism: A Review. Biochem. Biophys. Res. Commun. 2018;496:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI

Amini S., Ghobadi C., Yamchi A. Proline Accumulation and Osmotic Stress: An Overview of P5CS Gene in Plants. J. Plant Mol. Breed. 2015;3:44–55.

Saddhe A.A., Manuka R., Penna S. Plant Sugars: Homeostasis and Transport under Abiotic Stress in Plants. Physiol. Plant. 2020;171:739–755. doi: 10.1111/ppl.13283. PubMed DOI

Waśkiewicz A., Beszterda M., Goliński P. Oxidative Damage to Plants. Elsevier; Amsterdam, The Netherlands: 2014. Nonenzymatic Antioxidants in Plants; pp. 201–234.

Zhang C., Shi S. Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago Sativa L.) Varieties to PEG-Induced Osmotic Stress. Front. Plant Sci. 2018;9:242. doi: 10.3389/fpls.2018.00242. PubMed DOI PMC

Gill S.S., Anjum N.A., Gill R., Yadav S., Hasanuzzaman M., Fujita M., Mishra P., Sabat S.C., Tuteja N. Superoxide Dismutase—Mentor of Abiotic Stress Tolerance in Crop Plants. Environ. Sci. Pollut. Res. 2015;22:10375–10394. doi: 10.1007/s11356-015-4532-5. PubMed DOI

Leung D.W.M. Studies of Catalase in Plants under Abiotic Stress. In: Gupta D.K., Palma J.M., Corpas F.J., editors. Antioxidants and Antioxidant Enzymes in Higher Plants. Springer International Publishing; Cham, Switzerland: 2018. pp. 27–39.

Pandey S., Fartyal D., Agarwal A., Shukla T., James D., Kaul T., Negi Y.K., Arora S., Reddy M.K. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. Front. Plant Sci. 2017;8:581. doi: 10.3389/fpls.2017.00581. PubMed DOI PMC

Asghar M.A., Li Y., Jiang H., Sun X., Ahmad B., Imran S., Yu L., Liu C., Yang W., Du J. Crosstalk between Abscisic Acid and Auxin under Osmotic Stress. Agron. J. 2019;111:2157–2162. doi: 10.2134/agronj2018.10.0633. DOI

Pál M., Tajti J., Szalai G., Peeva V., Végh B., Janda T. Interaction of Polyamines, Abscisic Acid and Proline under Osmotic Stress in the Leaves of Wheat Plants. Sci. Rep. 2018;8:12839. doi: 10.1038/s41598-018-31297-6. PubMed DOI PMC

Shivakrishna P., Ashok Reddy K., Manohar Rao D. Effect of PEG-6000 Imposed Drought Stress on RNA Content, Relative Water Content (RWC), and Chlorophyll Content in Peanut Leaves and Roots. Saudi J. Biol. Sci. 2018;25:285–289. PubMed PMC

Zhang Z., Igathinathane C., Li J., Cen H., Lu Y., Flores P. Technology Progress in Mechanical Harvest of Fresh Market Apples. Comput. Electron. Agric. 2020;175:105606. doi: 10.1016/j.compag.2020.105606. DOI

Acero N., Gradillas A., Beltran M., García A., Muñoz Mingarro D. Comparison of Phenolic Compounds Profile and Antioxidant Properties of Different Sweet Cherry (Prunus avium L.) Varieties. Food Chem. 2019;279:260–271. doi: 10.1016/j.foodchem.2018.12.008. PubMed DOI

Blažek J. Odrůda jabloně Rubinstep. Vědecké Práce Ovocnářské. 2001;17:163–165.

Boček S. Ovocné Dřeviny v Krajině: Pilotní vzdělávací Program, Hostětín 2007/8: Sborník Přednášek a Seminárních Prací. ZO ČSOP Veronica; Brno, Czech Republic: 2008.

Nove Odrudy Ovoce = New Cultivars of Fruit. Vyzkumny a slechtitelsky ustav ovocnarsky Holovousy; Holovousy, Czech Republic: 2007.

Kutina J., Holeček S. Pomologický Atlas 2. Brázda; Praha, Czech Republic: 1992.

Lane W.D., Schmid H. Lapins and Sunburst sweet cherry. Can. J. Plant Sci. 1984;64:211–214. doi: 10.4141/cjps84-029. DOI

Blažková J. Pěstování Třešní na Slabě Rostoucích Podnožích. Výzkumný a šlechtitelský Ústav Ovocnářský Holovousy; Holovousy, Czech Republic: 2005.

Kutina J. Pomologický Atlas 1. Brázda; Praha, Czech Republic: 1991.

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Barrs H.D., Weatherley P.E. A Re-Examination of the Relative Turgidity Techniques for Estimating Water Deficits in Leaves. Aust. J. Biol. Sci. 1962;15:413–428. doi: 10.1071/BI9620413. DOI

Bates L.S., Waldren R.P., Teare I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Mathew S., Abraham T.E., Zakaria Z.A. Reactivity of Phenolic Compounds towards Free Radicals under In Vitro Conditions. J. Food Sci. Technol. 2015;52:5790–5798. doi: 10.1007/s13197-014-1704-0. PubMed DOI PMC

Kováčik J., Babula P., Hedbavny J. Comparison of Vascular and Non-Vascular Aquatic Plant as Indicators of Cadmium Toxicity. Chemosphere. 2017;180:86–92. doi: 10.1016/j.chemosphere.2017.04.002. PubMed DOI

Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Dobrev P.I., Vankova R. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues. In: Shabala S., Cuin T.A., editors. Plant Salt Tolerance. Humana Press; Totowa, NJ, USA: 2012. pp. 251–261. PubMed

Alizadeh V., Shokri V., Soltani A., Yousefi M.A. Effects of Climate Change and Drought-Stress on Plant Physiology. Int. J. Adv. Biol. Biomed. Res. 2015;3:38–42.

Wang W., Liang D., Li C., Hao Y., Ma F., Shu F. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol. Biochem. 2012;51:81–89. doi: 10.1016/j.plaphy.2011.10.014. PubMed DOI

Karimi S., Yadollahi A., Nazari-Moghadam R., Imani A., Arzani K. Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. J. Biol. Environ. Sci. 2012;6:263–270.

Khoyerdi F.F., Shamshiri M.H., Estaji A. In vitro Screening of Almond (Prunus dulcis (Mill.)) Genotypes for Drought Tolerance. Sci. Hortic. 2016;198:44–51. doi: 10.1016/j.scienta.2015.11.028. DOI

Akbarpour E., Imani A., Yeganeh S.F. Physiological and Morphological Responses of Almond Cultivars under In Vitro Drought Stress. J. Nuts. 2017;8:61–72.

Jiménez S., Dridi J., Gutiérrez D., Moret D., Irigoyen J.J., Moreno M.A., Gogorcena Y. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol. 2013;33:1061–1075. doi: 10.1093/treephys/tpt074. PubMed DOI

Sivritepe N., Erturk U., Yerlikaya C., Turkan I., Bor M., Ozdemir F. Response of the cherry rootstock to water stress induced in vitro. Biol. Plant. 2008;52:573–576. doi: 10.1007/s10535-008-0114-4. DOI

Karimi S., Hojati S., Eshghi S., Moghaddam R.N., Jandoust S. Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Sci. Hortic. 2012;137:95–97. doi: 10.1016/j.scienta.2012.01.018. DOI

Turkan I., Bor M., Ozdemir F., Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought—Tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005;168:223–231. doi: 10.1016/j.plantsci.2004.07.032. DOI

Říha J. České Ovoce–díl III. Jablka. České nakladatelství; Praha, Czech Republic: 1919.

Zhong Y.-P., Li Z., Bai D.-F., Qi X.-J., Chen J.-Y., Wei C.-G., Lin M.-M., Fang J.-B. In Vitro Variation of Drought Tolerance in Five Actinidia Species. J. Am. Soc. Hortic. Sci. 2018;143:226–234. doi: 10.21273/JASHS04399-18. DOI

Lei Y., Yin C., Li C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol. Plant. 2006;127:182–191. doi: 10.1111/j.1399-3054.2006.00638.x. DOI

Kautz B., Noga G., Hunsche M. PEG and drought cause distinct changes in biochemical, physiological and morphological parameters of apple seedlings. Acta Physiol. Plant. 2015;37:162. doi: 10.1007/s11738-015-1914-8. DOI

Szabados L., Savouré A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI

Piwowarczyk B., Kamińska I., Rybiński W. Influence of PEG Generated Osmotic Stress on Shoot Regeneration and Some Biochemical Parameters in Lathyrus Culture. Czech J. Genet. Plant Breed. 2014;50:77–83. doi: 10.17221/110/2013-CJGPB. DOI

Thippeswamy M., Chandraobulreddy P., Sinilal B., Kumar M.S., Sudhakar C. Proline accumulation and the expression of Δ1-pyrroline-5-carboxylate synthetase in two safflower cultivars. Biol. Plant. 2010;54:386–390. doi: 10.1007/s10535-010-0070-7. DOI

Molinari H.B.C., Marur C.J., Daros E., Campos M.K.F., Carvalho J.F.P.R., Bespalhok Filho J.C., Pereira L.F.P., Vieira L.G.E. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol. Plant. 2007;130:218–229. doi: 10.1111/j.1399-3054.2007.00909.x. DOI

Yang J., Zhang J., Li C., Zhang Z., Ma F., Li M. Response of sugar metabolism in apple leaves subjected to short-term drought stress. Plant Physiol. Biochem. 2019;141:164–171. doi: 10.1016/j.plaphy.2019.05.025. PubMed DOI

Valliyodan B., Nguyen H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006;9:189–195. doi: 10.1016/j.pbi.2006.01.019. PubMed DOI

Šircelj H., Tausz M., Grill D., Batič F. Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Sci. Hortic. 2007;113:362–369. doi: 10.1016/j.scienta.2007.04.012. DOI

Ruan Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251. PubMed DOI

De Campos M.K.F., de Carvalho K., de Souza F.S., Marur C.J., Pereira L.F.P., Filho J.C.B., Vieira L.G.E. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ. Exp. Bot. 2011;72:242–250. doi: 10.1016/j.envexpbot.2011.03.009. DOI

Ashraf M., Akram N.A., Al-Qurainy F., Foolad M.R. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrientes. Adv. Agron. 2011;111:249–296.

Dar N.A., Amin I., Wani V., Wani S.A., Shikari A.B., Wani S.H., Masoodi K.Z. Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene. 2017;11:106–111. doi: 10.1016/j.plgene.2017.07.003. DOI

Kowitcharoen L., Wongs-Aree C., Setha S., Komkhuntod R., Srilaong V., Kondo S. Changes in abscisic acid and antioxidant activity in sugar apples underdrought conditions. Sci. Hortic. 2015;193:1–6. doi: 10.1016/j.scienta.2015.06.043. DOI

Perin E.C., da Silva Messias R., Borowski J.M., Crizel R.L., Schott I.B., Carvalho I.R., Rombaldi C.V., Galli V. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem. 2019;271:516–526. doi: 10.1016/j.foodchem.2018.07.213. PubMed DOI

Bielsa B., Leida C., Rubio-Cabetas M.J. Physiological characterization of drought stress response and expression of two transcription factors and two LEA genes in three Prunus genotypes. Sci. Hortic. 2016;213:260–269. doi: 10.1016/j.scienta.2016.11.006. DOI

Tworkoski T., Fazio G., Glenn D.M. Apple rootstock resistance to drought. Sci. Hortic. 2016;204:70–78. doi: 10.1016/j.scienta.2016.01.047. DOI

Bhusal N., Han S.-G., Yoon T.-M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.) Sci. Hortic. 2019;246:535–543. doi: 10.1016/j.scienta.2018.11.021. DOI

Ismail M.R., Davies W.J., Awad M.H. Leaf growth and stomatal sensitivity to ABA in droughted pepper plants. Sci. Hortic. 2002;96:313–327. doi: 10.1016/S0304-4238(02)00117-6. DOI

Zhang Z., Cao B., Li N., Chen Z., Xu K. Comparative transcriptome analysis of the regulation of ABA signaling genes in different rootstock grafted tomato seedlings under drought stress. Environ. Exp. Bot. 2019;166:103814. doi: 10.1016/j.envexpbot.2019.103814. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...