Different Oxytocin Responses to Acute Methamphetamine Treatment in Juvenile Female Rats Perinatally Exposed to Stress and/or Methamphetamine Administration

. 2019 ; 10 () : 305. [epub] 20190328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30984017

Methamphetamine (MA) is an addictive psychostimulant, often abused by drug-addicted women during pregnancy. The offspring of drug-addicted mothers are often exposed to perinatal stressors. The present study examines the effect of perinatal stressors and drug exposure on plasma oxytocin (OXY) levels in female progeny. Rat mothers were divided into three groups according to drug treatment during pregnancy: intact controls (C); saline (SA, s.c., 1 ml/kg); and MA (s.c., 5 mg/kg). Litters were divided into four groups according to postnatal stressors lasting from PD1 to 21: non-stressed controls (N); maternal separation (S); maternal cold-water stress (W); and maternal separation plus cold-water stress (SW). On postnatal day 30, acute MA or SA was administrated 1 h before the rats were sacrificed. Trunk blood was collected and plasma OXY was measured by specific ELISA after extraction. Our results showed that acute MA administration significantly increases plasma OXY levels in juvenile female rats; this effect was observed in prenatally intact rats only. Prenatal exposure of rats to mild stressor of daily SA injection prevented both acute MA-induced OXY stimulation and also stress-induced OXY inhibition. Although postnatal MA and stress exposure exert opposite effects on OXY release in juvenile rats, our data point out the modulatory role of prenatal mild stress in OXY response to postnatal stressors or MA treatment.

Zobrazit více v PubMed

Antonelli M. C., Pallares M. E., Ceccatelli S., Spulber S. (2017). Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog. Neurobiol. 155, 21–35. 10.1016/j.pneurobio.2016.05.005 PubMed DOI

Babb J. A., Carini L. M., Spears S. L., Nephew B. C. (2014). Transgenerational effects of social stress on social behavior, corticosterone, oxytocin, and prolactin in rats. Horm. Behav. 65, 386–393. 10.1016/j.yhbeh.2014.03.005, PMID: PubMed DOI PMC

Baracz S. J., Cornish J. L. (2016). The neurocircuitry involved in oxytocin modulation of methamphetamine addiction. Front. Neuroendocrinol. 43, 1–18. 10.1016/j.yfrne.2016.08.001, PMID: PubMed DOI

Baracz S. J., Everett N. A., Cornish J. L. (2018). The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: applicability of oxytocin as a pharmacotherapy. Neurosci. Biobehav. Rev. 10.1016/j.neubiorev.2018.08.014, PMID: PubMed DOI

Baracz S. J., Parker L. M., Suraev A. S., Everett N. A., Goodchild A. K., Mcgregor I. S., et al. . (2016). Chronic methamphetamine self-administration dysregulates oxytocin plasma levels and oxytocin receptor fibre density in the nucleus accumbens core and subthalamic nucleus of the rat. J. Neuroendocrinol. 28. 10.1111/jne.12337, PMID: PubMed DOI

Baskerville T. A., Douglas A. J. (2010). Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci. Ther. 16, e92–e123. 10.1111/j.1755-5949.2010.00154.x, PMID: PubMed DOI PMC

Benarroch E. E. (2013). Oxytocin and vasopressin: social neuropeptides with complex neuromodulatory functions. Neurology 80, 1521–1528. 10.1212/WNL.0b013e31828cfb15 PubMed DOI

Bernášková K., Tomková S., Šlamberová R. (2017). Are changes in excitability in the hippocampus of adult male rats induced by prenatal methamphetamine exposure or stress? Epilepsy Res. 137, 132–138. 10.1016/j.eplepsyres.2017.08.009, PMID: PubMed DOI

Cadet J. L., Brannock C., Ladenheim B., Mccoy M. T., Krasnova I. N., Lehrmann E., et al. . (2014). Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later. PLoS One 9:e84665. 10.1371/journal.pone.0084665, PMID: PubMed DOI PMC

Carson D. S., Berquist S. W., Trujillo T. H., Garner J. P., Hannah S. L., Hyde S. A., et al. . (2015). Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children. Mol. Psychiatry 20, 1085–1090. 10.1038/mp.2014.132, PMID: PubMed DOI

Carson D. S., Cornish J. L., Guastella A. J., Hunt G. E., Mcgregor I. S. (2010). Oxytocin decreases methamphetamine self-administration, methamphetamine hyperactivity, and relapse to methamphetamine-seeking behaviour in rats. Neuropharmacology 58, 38–43. 10.1016/j.neuropharm.2009.06.018 PubMed DOI

Champagne F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocrinol. 29, 386–397. 10.1016/j.yfrne.2008.03.003, PMID: PubMed DOI PMC

Cox B. M., Young A. B., See R. E., Reichel C. M. (2013). Sex differences in methamphetamine seeking in rats: impact of oxytocin. Psychoneuroendocrinology 38, 2343–2353. 10.1016/j.psyneuen.2013.05.005, PMID: PubMed DOI PMC

Dattel B. J. (1990). Substance abuse in pregnancy. Semin. Perinatol. 14, 179–187. PMID: PubMed

De Souza M. A., Centenaro L. A., Menegotto P. R., Henriques T. P., Bonini J., Achaval M., et al. . (2013). Prenatal stress produces social behavior deficits and alters the number of oxytocin and vasopressin neurons in adult rats. Neurochem. Res. 38, 1479–1489. 10.1007/s11064-013-1049-5, PMID: PubMed DOI

Drago F., Di Leo F., Giardina L. (1999). Prenatal stress induces body weight deficit and behavioural alterations in rats: the effect of diazepam. Eur. Neuropsychopharmacol. 9, 239–245. 10.1016/S0924-977X(98)00032-7, PMID: PubMed DOI

Fahrbach S. E., Morrell J. I., Pfaff D. W. (1985). Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology 40, 526–532. PubMed

Georgiou P., Zanos P., Garcia-Carmona J. A., Hourani S., Kitchen I., Laorden M. L., et al. . (2016). Methamphetamine abstinence induces changes in mu-opioid receptor, oxytocin and CRF systems: association with an anxiogenic phenotype. Neuropharmacology 105, 520–532. 10.1016/j.neuropharm.2016.02.012, PMID: PubMed DOI

Grewen K. M., Light K. C. (2011). Plasma oxytocin is related to lower cardiovascular and sympathetic reactivity to stress. Biol. Psychol. 87, 340–349. 10.1016/j.biopsycho.2011.04.003, PMID: PubMed DOI PMC

Heim C., Nemeroff C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039. 10.1016/S0006-3223(01)01157-X, PMID: PubMed DOI

Heim C., Young L. J., Newport D. J., Mletzko T., Miller A. H., Nemeroff C. B. (2009). Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 14, 954–958. 10.1038/mp.2008.112 PubMed DOI

Holubová A., Mikulecká A., Pometlová M., Nohejlová K., Šlamberová R. (2018). Long-term early life adverse experience impairs responsiveness to exteroceptive stimuli in adult rats. Behav. Process. 149, 59–64. 10.1016/j.beproc.2018.02.005, PMID: PubMed DOI

Holubová A., Štofková A., Jurčovičová J., Šlamberová R. (2016). The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiol. Res. 65, S557–S566. PMID: PubMed

Insel T. R. (2010). The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65, 768–779. 10.1016/j.neuron.2010.03.005, PMID: PubMed DOI PMC

Johnson J. L., Buisman-Pijlman F. T. A. (2016). Adversity impacting on oxytocin and behaviour: timing matters. Behav. Pharmacol. 27, 659–671. 10.1097/FBP.0000000000000269 PubMed DOI

Kagerbauer S. M., Martin J., Schuster T., Blobner M., Kochs E. F., Landgraf R. (2013). Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. J. Neuroendocrinol. 25, 668–673. 10.1111/jne.12038 PubMed DOI

Kish S. J. (2008). Pharmacologic mechanisms of crystal meth. CMAJ 178, 1679–1682. 10.1503/cmaj.071675 PubMed DOI PMC

Labuschagne I., Phan K. L., Wood A., Angstadt M., Chua P., Heinrichs M., et al. (2010). Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 35, 2403–2413. 10.1038/npp.2010.123 PubMed DOI PMC

Lajud N., Roque A., Cajero M., Gutierrez-Ospina G., Torner L. (2012). Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420. 10.1016/j.psyneuen.2011.07.011 PubMed DOI

Larsson G., Eriksson M., Zetterstrom R. (1979). Amphetamine addiction and pregnancy. Psycho-social and medical aspects. Acta Psychiatr. Scand. 60, 334–346. 10.1111/j.1600-0447.1979.tb00283.x, PMID: PubMed DOI

Lee H. J., Macbeth A. H., Pagani J. H., Young W. S., 3rd. (2009). Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151. 10.1016/j.pneurobio.2009.04.001, PMID: PubMed DOI PMC

Liles B. D., Newman E., Lagasse L. L., Derauf C., Shah R., Smith L. M., et al. . (2012). Perceived child behavior problems, parenting stress, and maternal depressive symptoms among prenatal methamphetamine users. Child Psychiatry Hum. Dev. 43, 943–957. 10.1007/s10578-012-0305-2, PMID: PubMed DOI PMC

Macúchová E., Nohejlová K., Ševčíková M., Hrebíčková I., Šlamberová R. (2017). Sex differences in the strategies of spatial learning in prenatally-exposed rats treated with various drugs in adulthood. Behav. Brain Res. 327, 83–93. 10.1016/j.bbr.2017.03.041 PubMed DOI

Marais L., Van Rensburg S. J., Van Zyl J. M., Stein D. J., Daniels W. M. (2008). Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci. Res. 61, 106–112. 10.1016/j.neures.2008.01.011 PubMed DOI

Marwick C. (2000). NIDA seeking data on effect of fetal exposure to methamphetamine. JAMA 283, 2225–2226. 10.1001/jama.283.17.2225-JMN0503-2-1, PMID: PubMed DOI

Minhas S., Liu C., Galdamez J., So V. M., Romeo R. D. (2016). Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats. Gen. Comp. Endocrinol. 234, 103–109. 10.1016/j.ygcen.2016.03.014, PMID: PubMed DOI

Murgatroyd C. A., Nephew B. C. (2013). Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology 38, 219–228. 10.1016/j.psyneuen.2012.05.020 PubMed DOI PMC

Neumann I. D., Slattery D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biol. Psychiatry 79, 213–221. 10.1016/j.biopsych.2015.06.004, PMID: PubMed DOI

Peters P., Saborowski F., Griebenow R. (1986). Peripheral hemodynamics and metabolic parameters influenced by amrinone at rest and following handgrip stress. Z. Kardiol. 75, 751–756. PubMed

Qi J., Yang J. Y., Wang F., Zhao Y. N., Song M., Wu C. F. (2009). Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement. Neuropharmacology 56, 856–865. 10.1016/j.neuropharm.2009.01.010, PMID: PubMed DOI

Rambousek L., Kačer P., Syslová K., Bumba J., Bubeníková-Valešová V., Šlamberová R. (2014). Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend. 139, 138–144. 10.1016/j.drugalcdep.2014.03.023, PMID: PubMed DOI

Sapolsky R. M., Meaney M. J. (1986). Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. 396, 64–76. PMID: PubMed

Šlamberová R. (2012). Drugs in pregnancy: the effects on mother and her progeny. Physiol. Res. 61(Suppl. 1), S123–S135. PubMed

Šlamberová R., Schindler C. J., Vathy I. (2002). Impact of maternal morphine and saline injections on behavioral responses to a cold water stressor in adult male and female progeny. Physiol. Behav. 75, 723–732. 10.1016/S0031-9384(02)00669-8 PubMed DOI

Stoop R. (2012). Neuromodulation by oxytocin and vasopressin. Neuron 76, 142–159. 10.1016/j.neuron.2012.09.025, PMID: PubMed DOI

Szeto A., Mccabe P. M., Nation D. A., Tabak B. A., Rossetti M. A., Mccullough M. E., et al. (2011). Evaluation of enzyme immunoassay and radioimmunoassay methods for the measurement of plasma oxytocin. Psychosom. Med. 73, 393–400. 10.1097/PSY.0b013e31821df0c2 PubMed DOI PMC

Thompson M. R., Callaghan P. D., Hunt G. E., Cornish J. L., McGregor I. S. (2007). A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience 146, 509–514. 10.1016/j.neuroscience.2007.02.032, PMID: PubMed DOI

Todeschin A. S., Winkelmann-Duarte E. C., Jacob M. H., Aranda B. C., Jacobs S., Fernandes M. C., et al. . (2009). Effects of neonatal handling on social memory, social interaction, and number of oxytocin and vasopressin neurons in rats. Horm. Behav. 56, 93–100. 10.1016/j.yhbeh.2009.03.006, PMID: PubMed DOI

Toepfer P., Heim C., Entringer S., Binderd E., Wadhwa P., Buss C. (2017). Oxytocin pathways in the intergenerational transmission of Materna early life stress. Neurosci. Biobehav. Rev. 73, 293–308. 10.1016/j.neubiorev.2016.12.026, PMID: PubMed DOI PMC

Unternaehrer E., Bolten M., Nast I., Staehli S., Meyer A. H., Dempster E., et al. . (2016). Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc. Cogn. Affect. Neurosci. 11, 1460–1470. 10.1093/scan/nsw051, PMID: PubMed DOI PMC

Wang Y. L., Yuan Y., Yang J., Wang C. H., Pan Y. J., Lu L., et al. (2013). The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides 47, 93–97. 10.1016/j.npep.2012.12.003 PubMed DOI

Winkelmann-Duarte E. C., Todeschin A. S., Fernandes M. C., Bittencourt L. C., Pereira G. A., Samios V. N., et al. . (2007). Plastic changes induced by neonatal handling in the hypothalamus of female rats. Brain Res. 1170, 20–30. 10.1016/j.brainres.2007.07.030, PMID: PubMed DOI

Winslow J. T., Noble P. L., Lyons C. K., Sterk S. M., Insel T. R. (2003). Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology 28, 910–918. 10.1038/sj.npp.1300128 PubMed DOI

Zanos P., Wright S. R., Georgiou P., Yoo J. H., Ledent C., Hourani S. M., et al. . (2014). Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism. Pharmacol. Biochem. Behav. 119, 72–79. 10.1016/j.pbb.2013.05.009, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...