Co-Delivery of Eugenol and Dacarbazine by Hyaluronic Acid-Coated Liposomes for Targeted Inhibition of Survivin in Treatment of Resistant Metastatic Melanoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
45/67/2018-Nan/BMS
Indian Council of Medical Research
PubMed
30987266
PubMed Central
PMC6523131
DOI
10.3390/pharmaceutics11040163
PII: pharmaceutics11040163
Knihovny.cz E-zdroje
- Klíčová slova
- Quality by Design (QbD), apoptosis, cytotoxicity, hyaluronic acid, liposomes, melanoma treatment, migration inhibition, survivin inhibition,
- Publikační typ
- časopisecké články MeSH
While melanoma remains a challenge for oncologists, possibilities are being continuously explored to fight resistant metastatic melanoma more effectively. Eugenol is reported to inhibit survivin protein in breast cancer cells. Survivin is also overexpressed by melanoma cells, and is known to impart resistance to them against chemotherapy-induced apoptosis. To be able to fight resistant melanoma, we formulated hyaluronic acid (HA)-coated liposomes loaded with an effective combination of anti-melanoma agents (Dacarbazine and Eugenol), using a solvent injection method. Quality-by-Design (QbD) was applied to optimize and obtain a final formulation with the desired quality attributes, and within an acceptable size range. The optimized formulation was then subjected to performance analysis in cell lines. Coated-Dacarbazine Eugenol Liposomes were found to possess 95.08% cytotoxicity at a dacarbazine concentration of 0.5 µg/mL, while Dacarbazine Solution showed only 10.20% cytotoxicity at the same concentration. The number of late apoptotic cells was also found to be much higher (45.16% vs. 8.43%). Furthermore, migration assay and proliferation study also revealed significantly higher inhibition of cell migration and proliferation by Coated-Dacarbazine Eugenol Liposomes, signifying its potential against metastasis. Thus, surface-functionalized dacarbazine- and eugenol-loaded liposomes hold great promise against resistant and aggressive metastatic melanoma, with much less unwanted cytotoxicity and reduced doses of the chemotherapeutic agent.
Dabur Research Foundation Ghaziabad 201010 India
Department of Wood Processing Mendel University in Brno 61300 Brno Czech Republic
Zobrazit více v PubMed
Sadozai H., Gruber T., Hunger R.E., Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front. Immunol. 2017;8:1617. doi: 10.3389/fimmu.2017.01617. PubMed DOI PMC
Bandarchi B., Jabbari C.A., Vedadi A., Navab R. Molecular biology of normal melanocytes and melanoma cells. J. Clin. Pathol. 2013;66:644–648. doi: 10.1136/jclinpath-2013-201471. PubMed DOI
Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., Dandona L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548. PubMed PMC
Bhatia S., Tykodi S.S., Thompson J.A. Treatment of Metastatic Melanoma: An Overview. Oncol. Williston Park N. 2009;23:488–496. PubMed PMC
Mishra H., Mishra P.K., Ekielski A., Jaggi M., Iqbal Z., Talegaonkar S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. and Clin. Oncol. 2018;144:2283–2302. doi: 10.1007/s00432-018-2726-1. PubMed DOI PMC
Mishra H., Mishra P.K., Ekielski A., Iqbal Z., Jaggi M., Talegaonkar S. Functionalized nanoliposomes loaded with anti survivin and anti angiogenic agents to enhance the activity of chemotherapy against melanoma by 4-pronged action. Med. Hypotheses. 2018;116:141–146. doi: 10.1016/j.mehy.2018.05.002. PubMed DOI
Kesharwani S.S., Kaur S., Tummala H., Sangamwar A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv. 2018;15:1127–1142. doi: 10.1080/17425247.2018.1537261. PubMed DOI
Kesharwani S.S., Kaur S., Tummala H., Sangamwar A.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf. B Biointerfaces. 2019;173:581–590. doi: 10.1016/j.colsurfb.2018.10.022. PubMed DOI
Grossman D., McNiff J.M., Li F., Altieri D.C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J. Investig. Dermatol. 1999;113:1076–1081. doi: 10.1046/j.1523-1747.1999.00776.x. PubMed DOI
Helmbach H., Rossmann E., Kern M.A., Schadendorf D. Drug-resistance in human melanoma. Int. J. Cancer. 2001;93:617–622. doi: 10.1002/ijc.1378. PubMed DOI
Fernández J.G., Rodríguez D.A., Valenzuela M., Calderon C., Urzúa U., Munroe D., Rosas C., Lemus D., Díaz N., Wright M.C. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol. Cancer. 2014;13:209. doi: 10.1186/1476-4598-13-209. PubMed DOI PMC
Yamanaka K., Nakahara T., Yamauchi T., Kita A., Takeuchi M., Kiyonaga F., Kaneko N., Sasamata M. Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin. Cancer Res. 2011;17:5423–5431. doi: 10.1158/1078-0432.CCR-10-3410. PubMed DOI
Ma W.-H., Liu Y.-C., Xue M.-L., Zheng Z., Ge Y.-L. Downregulation of survivin expression exerts antitumoral effects on mouse breast cancer cells in vitro and in vivo. Oncol. Lett. 2016;11:159–167. doi: 10.3892/ol.2015.3870. PubMed DOI PMC
Zhang M., Sun Y.-F., Luo S. Ani-survivin DNAzymes inhibit cell proliferation and migration in Breast Cancer Cell Line MCF-7. Asian Pac. J. Cancer Prev. 2012;13:6233–6237. doi: 10.7314/APJCP.2012.13.12.6233. PubMed DOI
Al-Sharif I., Remmal A., Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13:600. doi: 10.1186/1471-2407-13-600. PubMed DOI PMC
Slameňová D., Horváthová E., Wsólová L., Šramková M., Navarová J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat. Res. Toxicol. Environ. Mutagen. 2009;677:46–52. doi: 10.1016/j.mrgentox.2009.05.016. PubMed DOI
Carrasco A.H., Espinoza C.L., Cardile V., Gallardo C., Cardona W., Lombardo L., Catalán M.K., Cuellar F.M., Russo A. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I) J. Braz. Chem. Soc. 2008;19:543–548. doi: 10.1590/S0103-50532008000300024. DOI
Mitra A.K., Agrahari V., Mandal A., Cholkar K., Natarajan C., Shah S., Joseph M., Trinh H.M., Vaishya R., Yang X., et al. NOVEL DELIVERY APPROACHES FOR CANCER THERAPEUTICS. J. Control. Release Off. J. Control. Release Soc. 2015;219:248–268. doi: 10.1016/j.jconrel.2015.09.067. PubMed DOI PMC
Wickens J.M., Alsaab H.O., Kesharwani P., Bhise K., Amin M.C.I.M., Tekade R.K., Gupta U., Iyer A.K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today. 2017;22:665–680. doi: 10.1016/j.drudis.2016.12.009. PubMed DOI PMC
Wang Y., Yang F., Zhang H.-X., Zi X.-Y., Pan X.-H., Chen F., Luo W.-D., Li J.-X., Zhu H.-Y., Hu Y.-P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013;4:e783. doi: 10.1038/cddis.2013.314. PubMed DOI PMC
Camerin M., Moreno M., Marín M.J., Schofield C.L., Chambrier I., Cook M.J., Coppellotti O., Jori G., Russell D.A. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochem. Photobiol. Sci. 2016;15:618–625. doi: 10.1039/C5PP00463B. PubMed DOI
Deng C., Zhang Q., Fu Y., Sun X., Gong T., Zhang Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS Appl. Mater. Interfaces. 2017;9:1280–1292. doi: 10.1021/acsami.6b13738. PubMed DOI
Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharm. Res. 2008;25:781–791. doi: 10.1007/s11095-007-9511-1. PubMed DOI
Xu X., Khan M.A., Burgess D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int. J. Pharm. 2011;419:52–59. doi: 10.1016/j.ijpharm.2011.07.012. PubMed DOI
Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC
Sebaaly C., Jraij A., Fessi H., Charcosset C., Greige-Gerges H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015;178:52–62. doi: 10.1016/j.foodchem.2015.01.067. PubMed DOI
Kumar S., Ali J., Baboota S. Design Expert ® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology. 2016;27:435101. doi: 10.1088/0957-4484/27/43/435101. PubMed DOI
Negi L.M., Jaggi M., Joshi V., Ronodip K., Talegaonkar S. Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int. J. Biol. Macromol. 2015;73:222–235. doi: 10.1016/j.ijbiomac.2014.11.026. PubMed DOI
Muley P., Kumar S., El Kourati F., Kesharwani S.S., Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int. J. Pharm. 2016;500:32–41. doi: 10.1016/j.ijpharm.2016.01.005. PubMed DOI
Kumar S., Kesharwani S.S., Mathur H., Tyagi M., Bhat G.J., Tummala H. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur. J. Pharm. Sci. 2016;82:86–96. doi: 10.1016/j.ejps.2015.11.010. PubMed DOI
Sharma H., Kumar K., Choudhary C., Mishra P.K., Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol. 2016;44:672–679. doi: 10.3109/21691401.2014.978980. PubMed DOI
Jaafar-Maalej C., Diab R., Andrieu V., Elaissari A., Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010;20:228–243. doi: 10.3109/08982100903347923. PubMed DOI
Lasic D.D. The mechanism of vesicle formation. Biochem. J. 1988;256:1–11. doi: 10.1042/bj2560001. PubMed DOI PMC
Ghosh R., Nadiminty N., Fitzpatrick J.E., Alworth W.L., Slaga T.J., Kumar A.P. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem. 2005;280:5812–5819. doi: 10.1074/jbc.M411429200. PubMed DOI
Chen Y., Kramer D.L., Li F., Porter C.W. Loss of inhibitor of apoptosis proteins as a determinant of polyamine analog-induced apoptosis in human melanoma cells. Oncogene. 2003;22:4964. doi: 10.1038/sj.onc.1206725. PubMed DOI
Mummert M.E., Mummert D.I., Ellinger L., Takashima A. Functional Roles of Hyaluronan in B16-F10 Melanoma Growth and Experimental Metastasis in Mice1. Mol. Cancer Ther. 2003;2:295–300. PubMed
Prieto V.G., Sadick N.S., Shea C.R. Androgenetic Alopecia: Analysis of Proliferation and Apoptosis. Arch. Dermatol. 2002;138:1101–1102. doi: 10.1001/archderm.138.8.1101. PubMed DOI
Shibuya H., Kato Y., Saito M., Isobe T., Tsuboi R., Koga M., Toyota H., Mizuguchi J. Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res. 2003;13:457–464. doi: 10.1097/00008390-200310000-00004. PubMed DOI
Sanada M., Hidaka M., Takagi Y., Takano T.Y., Nakatsu Y., Tsuzuki T., Sekiguchi M. Modes of actions of two types of anti-neoplastic drugs, dacarbazine and ACNU, to induce apoptosis. Carcinogenesis. 2007;28:2657–2663. doi: 10.1093/carcin/bgm188. PubMed DOI
Feng T., Yu H., Xia Q., Ma Y., Yin H., Shen Y., Liu X. Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget. 2017;8:69577–69593. doi: 10.18632/oncotarget.18632. PubMed DOI PMC
McKenzie J.A., Liu T., Goodson A., Grossman D. Survivin enhances motility of melanoma cells by supporting Akt activation and α5 integrin upregulation. Cancer Res. 2010;70:7927–7937. doi: 10.1158/0008-5472.CAN-10-0194. PubMed DOI PMC
Tas F. Metastatic Behavior in Melanoma: Timing, Pattern, Survival, and Influencing Factors. [(accessed on 27 September 2018)]; Available online: https://www.hindawi.com/journals/jo/2012/647684/ PubMed PMC
Expression of Integrins and Adhesive Properties of Human Endothelial Cell Line EA.hy 926. [(accessed on 12 September 2018)]; Available online: http://cgp.iiarjournals.org/content/2/5/265.abstract. PubMed
El-Dakdouki M.H., El-Boubbou K., Kamat M., Huang R., Abela G.S., Kiupel M., Zhu D.C., Huang X. CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging. Pharm. Res. 2014;31:1426. doi: 10.1007/s11095-013-1021-8. PubMed DOI PMC
Alam C., Seed M., Freemantle C., Brown J., Perretti M., Carrier M., Divwedi A., West D., Gustafson S., Colville-Nash P. The inhibition of neutrophil-endothelial cell adhesion by hyaluronan independent of CD44. Inflammopharmacology. 2005;12:535–550. doi: 10.1163/156856005774382733. PubMed DOI
Feitelson M.A., Arzumanyan A., Kulathinal R.J., Blain S.W., Holcombe R.F., Mahajna J., Marino M., Martinez-Chantar M.L., Nawroth R., Sanchez-Garcia I., et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015;35:S25–S54. doi: 10.1016/j.semcancer.2015.02.006. PubMed DOI PMC
Adair T.H., Montani J.-P. Angiogenesis Assays. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2010. PubMed