Co-Delivery of Eugenol and Dacarbazine by Hyaluronic Acid-Coated Liposomes for Targeted Inhibition of Survivin in Treatment of Resistant Metastatic Melanoma

. 2019 Apr 03 ; 11 (4) : . [epub] 20190403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30987266

Grantová podpora
45/67/2018-Nan/BMS Indian Council of Medical Research

Odkazy

PubMed 30987266
PubMed Central PMC6523131
DOI 10.3390/pharmaceutics11040163
PII: pharmaceutics11040163
Knihovny.cz E-zdroje

While melanoma remains a challenge for oncologists, possibilities are being continuously explored to fight resistant metastatic melanoma more effectively. Eugenol is reported to inhibit survivin protein in breast cancer cells. Survivin is also overexpressed by melanoma cells, and is known to impart resistance to them against chemotherapy-induced apoptosis. To be able to fight resistant melanoma, we formulated hyaluronic acid (HA)-coated liposomes loaded with an effective combination of anti-melanoma agents (Dacarbazine and Eugenol), using a solvent injection method. Quality-by-Design (QbD) was applied to optimize and obtain a final formulation with the desired quality attributes, and within an acceptable size range. The optimized formulation was then subjected to performance analysis in cell lines. Coated-Dacarbazine Eugenol Liposomes were found to possess 95.08% cytotoxicity at a dacarbazine concentration of 0.5 µg/mL, while Dacarbazine Solution showed only 10.20% cytotoxicity at the same concentration. The number of late apoptotic cells was also found to be much higher (45.16% vs. 8.43%). Furthermore, migration assay and proliferation study also revealed significantly higher inhibition of cell migration and proliferation by Coated-Dacarbazine Eugenol Liposomes, signifying its potential against metastasis. Thus, surface-functionalized dacarbazine- and eugenol-loaded liposomes hold great promise against resistant and aggressive metastatic melanoma, with much less unwanted cytotoxicity and reduced doses of the chemotherapeutic agent.

Zobrazit více v PubMed

Sadozai H., Gruber T., Hunger R.E., Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front. Immunol. 2017;8:1617. doi: 10.3389/fimmu.2017.01617. PubMed DOI PMC

Bandarchi B., Jabbari C.A., Vedadi A., Navab R. Molecular biology of normal melanocytes and melanoma cells. J. Clin. Pathol. 2013;66:644–648. doi: 10.1136/jclinpath-2013-201471. PubMed DOI

Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., Dandona L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548. PubMed PMC

Bhatia S., Tykodi S.S., Thompson J.A. Treatment of Metastatic Melanoma: An Overview. Oncol. Williston Park N. 2009;23:488–496. PubMed PMC

Mishra H., Mishra P.K., Ekielski A., Jaggi M., Iqbal Z., Talegaonkar S. Melanoma treatment: From conventional to nanotechnology. J. Cancer Res. and Clin. Oncol. 2018;144:2283–2302. doi: 10.1007/s00432-018-2726-1. PubMed DOI PMC

Mishra H., Mishra P.K., Ekielski A., Iqbal Z., Jaggi M., Talegaonkar S. Functionalized nanoliposomes loaded with anti survivin and anti angiogenic agents to enhance the activity of chemotherapy against melanoma by 4-pronged action. Med. Hypotheses. 2018;116:141–146. doi: 10.1016/j.mehy.2018.05.002. PubMed DOI

Kesharwani S.S., Kaur S., Tummala H., Sangamwar A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv. 2018;15:1127–1142. doi: 10.1080/17425247.2018.1537261. PubMed DOI

Kesharwani S.S., Kaur S., Tummala H., Sangamwar A.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf. B Biointerfaces. 2019;173:581–590. doi: 10.1016/j.colsurfb.2018.10.022. PubMed DOI

Grossman D., McNiff J.M., Li F., Altieri D.C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J. Investig. Dermatol. 1999;113:1076–1081. doi: 10.1046/j.1523-1747.1999.00776.x. PubMed DOI

Helmbach H., Rossmann E., Kern M.A., Schadendorf D. Drug-resistance in human melanoma. Int. J. Cancer. 2001;93:617–622. doi: 10.1002/ijc.1378. PubMed DOI

Fernández J.G., Rodríguez D.A., Valenzuela M., Calderon C., Urzúa U., Munroe D., Rosas C., Lemus D., Díaz N., Wright M.C. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol. Cancer. 2014;13:209. doi: 10.1186/1476-4598-13-209. PubMed DOI PMC

Yamanaka K., Nakahara T., Yamauchi T., Kita A., Takeuchi M., Kiyonaga F., Kaneko N., Sasamata M. Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin. Cancer Res. 2011;17:5423–5431. doi: 10.1158/1078-0432.CCR-10-3410. PubMed DOI

Ma W.-H., Liu Y.-C., Xue M.-L., Zheng Z., Ge Y.-L. Downregulation of survivin expression exerts antitumoral effects on mouse breast cancer cells in vitro and in vivo. Oncol. Lett. 2016;11:159–167. doi: 10.3892/ol.2015.3870. PubMed DOI PMC

Zhang M., Sun Y.-F., Luo S. Ani-survivin DNAzymes inhibit cell proliferation and migration in Breast Cancer Cell Line MCF-7. Asian Pac. J. Cancer Prev. 2012;13:6233–6237. doi: 10.7314/APJCP.2012.13.12.6233. PubMed DOI

Al-Sharif I., Remmal A., Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13:600. doi: 10.1186/1471-2407-13-600. PubMed DOI PMC

Slameňová D., Horváthová E., Wsólová L., Šramková M., Navarová J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat. Res. Toxicol. Environ. Mutagen. 2009;677:46–52. doi: 10.1016/j.mrgentox.2009.05.016. PubMed DOI

Carrasco A.H., Espinoza C.L., Cardile V., Gallardo C., Cardona W., Lombardo L., Catalán M.K., Cuellar F.M., Russo A. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I) J. Braz. Chem. Soc. 2008;19:543–548. doi: 10.1590/S0103-50532008000300024. DOI

Mitra A.K., Agrahari V., Mandal A., Cholkar K., Natarajan C., Shah S., Joseph M., Trinh H.M., Vaishya R., Yang X., et al. NOVEL DELIVERY APPROACHES FOR CANCER THERAPEUTICS. J. Control. Release Off. J. Control. Release Soc. 2015;219:248–268. doi: 10.1016/j.jconrel.2015.09.067. PubMed DOI PMC

Wickens J.M., Alsaab H.O., Kesharwani P., Bhise K., Amin M.C.I.M., Tekade R.K., Gupta U., Iyer A.K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today. 2017;22:665–680. doi: 10.1016/j.drudis.2016.12.009. PubMed DOI PMC

Wang Y., Yang F., Zhang H.-X., Zi X.-Y., Pan X.-H., Chen F., Luo W.-D., Li J.-X., Zhu H.-Y., Hu Y.-P. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013;4:e783. doi: 10.1038/cddis.2013.314. PubMed DOI PMC

Camerin M., Moreno M., Marín M.J., Schofield C.L., Chambrier I., Cook M.J., Coppellotti O., Jori G., Russell D.A. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochem. Photobiol. Sci. 2016;15:618–625. doi: 10.1039/C5PP00463B. PubMed DOI

Deng C., Zhang Q., Fu Y., Sun X., Gong T., Zhang Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS Appl. Mater. Interfaces. 2017;9:1280–1292. doi: 10.1021/acsami.6b13738. PubMed DOI

Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharm. Res. 2008;25:781–791. doi: 10.1007/s11095-007-9511-1. PubMed DOI

Xu X., Khan M.A., Burgess D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int. J. Pharm. 2011;419:52–59. doi: 10.1016/j.ijpharm.2011.07.012. PubMed DOI

Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC

Sebaaly C., Jraij A., Fessi H., Charcosset C., Greige-Gerges H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015;178:52–62. doi: 10.1016/j.foodchem.2015.01.067. PubMed DOI

Kumar S., Ali J., Baboota S. Design Expert ® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology. 2016;27:435101. doi: 10.1088/0957-4484/27/43/435101. PubMed DOI

Negi L.M., Jaggi M., Joshi V., Ronodip K., Talegaonkar S. Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int. J. Biol. Macromol. 2015;73:222–235. doi: 10.1016/j.ijbiomac.2014.11.026. PubMed DOI

Muley P., Kumar S., El Kourati F., Kesharwani S.S., Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int. J. Pharm. 2016;500:32–41. doi: 10.1016/j.ijpharm.2016.01.005. PubMed DOI

Kumar S., Kesharwani S.S., Mathur H., Tyagi M., Bhat G.J., Tummala H. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur. J. Pharm. Sci. 2016;82:86–96. doi: 10.1016/j.ejps.2015.11.010. PubMed DOI

Sharma H., Kumar K., Choudhary C., Mishra P.K., Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol. 2016;44:672–679. doi: 10.3109/21691401.2014.978980. PubMed DOI

Jaafar-Maalej C., Diab R., Andrieu V., Elaissari A., Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010;20:228–243. doi: 10.3109/08982100903347923. PubMed DOI

Lasic D.D. The mechanism of vesicle formation. Biochem. J. 1988;256:1–11. doi: 10.1042/bj2560001. PubMed DOI PMC

Ghosh R., Nadiminty N., Fitzpatrick J.E., Alworth W.L., Slaga T.J., Kumar A.P. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem. 2005;280:5812–5819. doi: 10.1074/jbc.M411429200. PubMed DOI

Chen Y., Kramer D.L., Li F., Porter C.W. Loss of inhibitor of apoptosis proteins as a determinant of polyamine analog-induced apoptosis in human melanoma cells. Oncogene. 2003;22:4964. doi: 10.1038/sj.onc.1206725. PubMed DOI

Mummert M.E., Mummert D.I., Ellinger L., Takashima A. Functional Roles of Hyaluronan in B16-F10 Melanoma Growth and Experimental Metastasis in Mice1. Mol. Cancer Ther. 2003;2:295–300. PubMed

Prieto V.G., Sadick N.S., Shea C.R. Androgenetic Alopecia: Analysis of Proliferation and Apoptosis. Arch. Dermatol. 2002;138:1101–1102. doi: 10.1001/archderm.138.8.1101. PubMed DOI

Shibuya H., Kato Y., Saito M., Isobe T., Tsuboi R., Koga M., Toyota H., Mizuguchi J. Induction of apoptosis and/or necrosis following exposure to antitumour agents in a melanoma cell line, probably through modulation of Bcl-2 family proteins. Melanoma Res. 2003;13:457–464. doi: 10.1097/00008390-200310000-00004. PubMed DOI

Sanada M., Hidaka M., Takagi Y., Takano T.Y., Nakatsu Y., Tsuzuki T., Sekiguchi M. Modes of actions of two types of anti-neoplastic drugs, dacarbazine and ACNU, to induce apoptosis. Carcinogenesis. 2007;28:2657–2663. doi: 10.1093/carcin/bgm188. PubMed DOI

Feng T., Yu H., Xia Q., Ma Y., Yin H., Shen Y., Liu X. Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget. 2017;8:69577–69593. doi: 10.18632/oncotarget.18632. PubMed DOI PMC

McKenzie J.A., Liu T., Goodson A., Grossman D. Survivin enhances motility of melanoma cells by supporting Akt activation and α5 integrin upregulation. Cancer Res. 2010;70:7927–7937. doi: 10.1158/0008-5472.CAN-10-0194. PubMed DOI PMC

Tas F. Metastatic Behavior in Melanoma: Timing, Pattern, Survival, and Influencing Factors. [(accessed on 27 September 2018)]; Available online: https://www.hindawi.com/journals/jo/2012/647684/ PubMed PMC

Expression of Integrins and Adhesive Properties of Human Endothelial Cell Line EA.hy 926. [(accessed on 12 September 2018)]; Available online: http://cgp.iiarjournals.org/content/2/5/265.abstract. PubMed

El-Dakdouki M.H., El-Boubbou K., Kamat M., Huang R., Abela G.S., Kiupel M., Zhu D.C., Huang X. CD44 Targeting Magnetic Glyconanoparticles for Atherosclerotic Plaque Imaging. Pharm. Res. 2014;31:1426. doi: 10.1007/s11095-013-1021-8. PubMed DOI PMC

Alam C., Seed M., Freemantle C., Brown J., Perretti M., Carrier M., Divwedi A., West D., Gustafson S., Colville-Nash P. The inhibition of neutrophil-endothelial cell adhesion by hyaluronan independent of CD44. Inflammopharmacology. 2005;12:535–550. doi: 10.1163/156856005774382733. PubMed DOI

Feitelson M.A., Arzumanyan A., Kulathinal R.J., Blain S.W., Holcombe R.F., Mahajna J., Marino M., Martinez-Chantar M.L., Nawroth R., Sanchez-Garcia I., et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015;35:S25–S54. doi: 10.1016/j.semcancer.2015.02.006. PubMed DOI PMC

Adair T.H., Montani J.-P. Angiogenesis Assays. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2010. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...