Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate

. 2018 Oct ; 10 (10) : 2427-2452. [epub] 20181015

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31007835

Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.

Centre of Excellence PLECO Department of Biology University of Antwerp Antwerp Belgium

Climate Simulation and Prediction Division Foundation Euro Mediterranean Center on Climate Change Bologna Italy

College of Engineering Mathematics and Physical Sciences University of Exeter Exeter UK

Department Environmental Engineering Technical University of Denmark Lyngby Denmark

Department for Innovation in Biological Agro food and Forest Systems University of Tuscia Viterbo Italy

Department of Bioscience Engineering University of Antwerp Antwerp Belgium

Department of Environmental Science Policy and Management University of California Berkeley CA USA

Department of Matter and Energy Fluxes Global Change Research Institute CAS Brno Czech Republic

Directorate for Sustainable Resources European Commission Joint Research Centre Ispra Italy

Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA

Impacts on Agriculture Forests and Ecosystem Services Division Foundation Euro Mediterranean Center on Climate Change Viterbo Italy

Institute of Meteorology and Climate Research Karlsruhe Institute of Technology Karlsruhe Germany

Max Plank Institute for Biogeochemistry Jena Germany

National Research Council of Italy Institute for Agriculture and Forestry Systems in the Mediterranean Rende Italy

Pacific Northwest National Laboratory Joint Global Change Research Institute at the University of Maryland College Park College Park MD USA

Potsdam Institute for Climate Impact Research Potsdam Germany

Zobrazit více v PubMed

Adams, H. , Zeppel, M. , Anderegg, W. , Hartmann, H. , Landhäusser, S. M. , Tissue, D. T. , et al. (2017). A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality. Nature Ecology and Evolution, 1(9), 1285–1291. 10.1038/s41559-017-0248-x PubMed DOI

Ainsworth, E. , & Long, S. (2005, 165). What we have learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . New Phytologist, 351–371. PubMed

Allen, C. , Macalady, A. , Chenchouni, H. , Bachelet, D. , McDowell, N. , Vennetier, M. , et al. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. 10.1016/j.foreco.2009.09.001 DOI

Alvarez, S. , Ortiz, C. , Diaz‐Pinès, E. , & Rubio, A. (2016). Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2Fix model. Mitigation and Adaptation Strategies for Global Change, 21, 1045–1058.

Amthor, J. (2000). The McCree‐de Wit‐Penning de Vries‐Thornley respiration paradigms: 30 years later. Annals of Botany, 86, 1–20.

Anav, A. , & Mariotti, A. (2011). Sensitivity of natural vegetation to climate change in the Euro‐Mediterranean area. Climate Research, 46(3), 277–292. 10.3354/cr00993 DOI

Anav, A. , Menut, L. , Khvorostyanov, D. , & Viovy, N. (2011). Impact of tropospheric ozone on the Euro‐Mediterranean vegetation. Global Change Biology. 10.1111/j.1365-2486.2010.02387.x DOI

Anderegg, W. R. L. , Kane, J. M. , & Anderegg, L. D. L. (2012). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change. 10.1038/NCLIMATE1635 DOI

Arora, V. , & Boer, G. (2005). A parameterization for leaf phenology in the terrestrial ecosystem component of climate models. Global Change Biology, 11(1), 33–59.

Ashraf, M. , Bourque, C. , MacLean, D. , Erdle, T. , & Meng, F.‐R. (2015). Estimation of potential impacts of climate change on growth and yield of temperate tree species. Mitigation and Adaptation Strategies for Global Change, 20, 159–178.

Atkin, O. , Atkinson, L. , & Fisher, R. (2008). Using temperature‐dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate‐vegetation model. Global Change Biology, 14, 2709–2726.

Atkin, O. , Bruhn, D. , Hurry, V. , & Tjoelker, M. (2005). The hot and the cold: Unraveling the variable response of plant respiration to temperature. Functional Plant Biology, 32, 87–105. PubMed

Atkin, O. , Scheurwater, I. , & Pons, T. (2007). Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytologist, 174, 367–380. PubMed

Atkin, O. , & Tjoelker, M. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343–351. PubMed

Badger, M. , & Collatz, J . (1977). Studies on the kinetic mechanism of RudP‐carboxilase and oxygenase, with particular reference to the effect of temperature on kinetic parameters. 1976–1677: Carnegie Institution, Annual Report.

Battaglia, M. , Beadle, C. , & Loughhead, S. (1996). Photosynthetic response of Eucalyptus globulus and Eucalyptus nitens . Tree Physiology, 16, 81–89. PubMed

Bellassen, V. , & Luyssaert, S. (2014). Managing forests in uncertain times. Nature, 506, 153–155. PubMed

Bonan, G. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449. PubMed

Bonan, G. B. , Oleson, K. W. , Fisher, R. A. , Lasslop, G. , & Reichstein, M. (2012). Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. Journal of Geophysical Research, 117, G02026 10.1029/2011JG001913 DOI

Bradford, M. , & Crowther, T. (2013). Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist, 199, 7–9. PubMed

Brèda, H. , Huc, R. , Granier, A. , & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long‐term consequences. Annals of Forest Science, 63, 625–644.

Campbell, C. , Atkinson, L. , Zaragoza‐Castells, J. , Lundmark, M. , Atkin, O. , & Hurry, V. (2007). Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 176(2), 375–389. 10.1111/j.1469-8137.2007.02183.x PubMed DOI

Campbell, G. , & Norman, J. (1998). An introduction to environmental biophysics. New York: Wiley.

Campioli, M. , Malhi, Y. , Vicca, S. , Luyssaert, S. , Papale, D. , Peñuelas, J. , Reichstein, M. , Migliavacca, M. , Arain, M. A. , & Janssens, I. A. (2016). Evaluating the covariance between eddy‐covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7 10.1038/ncomms13717 PubMed DOI PMC

Campioli, M. , Vicca, S. , Luyssaert, S. , Bilcke, J. , Ceschia, E. , Chapin III, F. S. , Ciais, P. , Fernández‐Martínez, M. , Malhi, Y. , Obersteiner, M. , Olefeldt, D. , Papale, D. , Piao, S. L. , Peñuelas, J. , Sullivan, P. F. , Wang, X. , Zenone, T. , & Janssens, I. A. (2015). Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience, 8(11), 843–846. 10.1038/NGEO2553 DOI

Cescatti, A. , & Piutti, E. (1998). Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. Forest Ecology and Management, 102, 213–223.

Chen, H. , & Luo, Y. (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests. Global Change Biology. 10.1111/gcb.12994 PubMed DOI

Chen, M. , Melaas, E. , Gray, J. , Friedl, M. , & Richardson, A. D. (2016). A new seasonal‐deciduous spring phenology submodel in the Community Land Model 4.5: Impacts on carbon and water cycling under different future climate scenarios. Global Change Biology, 22(11), 3675–3688. 10.1111/gcb.13326 PubMed DOI

Chen, M. , & Zhuang, Q. (2013). Modelling temperature acclimation effects on the carbon dynamics of forest ecosystems in the conterminous Unites States. Tellus, 65(1). 10.3402/tellusb.v.65i0.19156 DOI

Ciais, P. , Reichstein, M. , Viovy, N. , Granier, A. , Ogée, J. , Allard, V. , Aubinet, M. , Buchmann, N. , Bernhofer, C. , Carrara, A. , Chevallier, F. , de Noblet, N. , Friend, A. D. , Friedlingstein, P. , Grünwald, T. , Heinesch, B. , Keronen, P. , Knohl, A. , Krinner, G. , Loustau, D. , Manca, G. , Matteucci, G. , Miglietta, F. , Ourcival, J. M. , Papale, D. , Pilegaard, K. , Rambal, S. , Seufert, G. , Soussana, J. F. , Sanz, M. J. , Schulze, E. D. , Vesala, T. , & Valentini, R. (2005). Europe‐wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529–533. 10.1038/nature03972 PubMed DOI

Clark, D. A. , Brown, S. , Kicklighter, D. W. , Chambers, J. Q. , Thomlinson, J. R. , & Ni, J. (2001). Measuring net primary production in forests: Concepts and field methods. Ecological Monographs, 11(2), 356–370.

Collalti, A. , Biondo, C. , Buttafuoco, G. , Maesano, M. , Caloiero, T. , Lucà, F. , et al. (2017). Simulation, calibration and validation protocols for the model 3D‐CMCC‐CNR‐FEM: A case study in the Bonis' watershed (Calabria, Italy). Forest, 14, 247–256. 10.3832/efor2368-014 DOI

Collalti, A. , Marconi, S. , Ibrom, A. , Trotta, C. , Anav, A. , D'Andrea, E. , Matteucci, G. , Montagnani, L. , Gielen, B. , Mammarella, I. , Grünwald, T. , Knohl, A. , Berninger, F. , Zhao, Y. , Valentini, R. , & Santini, M. (2016). Validation of 3D‐CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development, 9(2), 479–504. 10.5194/gmd-9-479-2016 DOI

Collalti, A. , Perugini, L. , Santini, M. , Chiti, T. , Nolè, A. , Matteucci, G. , Valentini, R. (2014). A process‐based model to simulate growth in forests with complex structure: Evaluation and use of 3D‐CMCC Forest Ecosystem Model in a deciduous forest in central Italy. Ecological Modelling, 272, 362–378. 10.1016/j.ecolmodel.2013.09.016 DOI

Collatz, G. , Ball, J. , Grivet, C. , & Berry, J. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.

Cox, P. (2001). Description of the “TRIFFID” Dynamic Global Vegetation Model (pp. 1–16). Berkshire, Hadley Centre, Met Office: Bracknell.

Creutzburg, M. , Scheller, R. , Lucash, M. , LeDuc, S. D. , & Johnson, M. G. (2017). Forest management scenarios in a changing climate: Trade‐offs between carbon, timber, and old forest. Ecological Applications, 27, 503–518. PubMed

De Kauwe, M. , Medlyn, B. , Zaehle, S. , Walker, A. P. , Dietze, M. C. , Hickler, T. , et al. (2013). Forest water use efficiency at elevated CO2: A model‐data intercomparison at two contrasting temperature forest FACE sites. Global Change Biology, 19, 1759–1779. PubMed

De Kauwe, M. , Medlyn, B. , Zahele, S. , Walker, A. P. , Dietze, M. C. , Wang, Y. P. , et al. (2014). Where does the carbon go? A model‐data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free‐air CO2 enrichment sites. New Phytologist, 203(3), 883–899. 10.1111/nph.12847 PubMed DOI PMC

DeLucia, E. , Drake, J. , Thomas, R. , et al. (2007). Forest carbon use efficiency: Is a respiration a constant fraction of gross primary production? Global Change Biology, 13, 1157–1167.

DeLucia, E. , Moore, D. , & Norby, R. (2005). Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle. Global Biogeochemical Cycles, 19, GB3006 10.1029/2004GB002346 DOI

Dewar, R. C. , Medlyn, B. E. , & McMurtrie, R. E. (1999). Acclimation of the respiration/photosynthesis ratio to temperature: Insights from a model. Global Change Biology, 5, 615–622.

de Wries, W. , Posch, M. , Simpson, D. , & Reinds, G. J. (2017). Modelling long‐term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. Science of the Total Environment, 605‐606, 1097–1116. PubMed

Dietze, M. C. , Sala, A. , Carbone, M. , Czimczik, C. I. , Mantooth, J. A. , Richardson, A. D. , Vargas, R. (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65(1), 667–687. 10.1146/annurev-arplant-050213-040054 PubMed DOI

Dore, S. , Montes‐Helu, M. , Hart, S. , Hungate, B. A. , Koch, G. W. , Moon, J. B. , et al. (2012). Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand‐replacing fire. Global Change Biology. 10.1111/j.1365-2486.2012.02775.x PubMed DOI

Drake, J. E. , & Tjoelker, M. G. (2016). Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? New Phytologist, 211(3), 850–863. 10.1111/nph.13978 PubMed DOI

Dunker, P. , Barreiro, S. , Hengevels, G. , Lind, T. , Mason, W. , Ambrozy, S. , & Spiecker, H. (2012). Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecology and Society, 17(4), 51.

Ellsworth, D. , Thomas, R. , Crous, K. , Palmroth, S. , Ward, E. , Maier, C. , DeLucia, E. , & Oren, R. (2010). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Global Change Biology, 18, 223–242.

FAO (2015). Global Forest Resource Assessment.

Fischer, R. A. , Koven, C. D. , Anderegg, W. L. R. , Christoffersen, B. O. , Dietze, M. C. , Farrior, C. E. , et al. (2017). Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 24(1), 35–54. 10.1111/gcb.13910 PubMed DOI

Fischer, R. A. , Muszala, S. , Verteinstein, M. , Lawrence, P. , Xu, C. , McDowell, N. G. , et al. (2015). Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 8(11), 3593–3619. 10.5194/gmd-8-3593-2015 DOI

Frank, D. , Poulter, B. , Saurer, M. , Esper, J. , Huntingford, C. , Helle, G. , et al. (2015). Water‐use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change. 10.1038/NCLIMATE2614 DOI

Franks, P. , Adams, M. , Amthor, J. , Barbour, M. M. , Berry, J. A. , Ellsworth, D. S. , et al. (2013). Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. New Phytologist, 197(4), 1077–1094. 10.1111/nph.12104 PubMed DOI

Friedlingstein, P. , Joel, G. , Field, C. , & Fung, I. (1998). Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5, 755–770.

Friend, P. (2010). Terrestrial plant production and climate change. Journal of Experimental Botany, 31, 1293–1309. PubMed

Fürstenau, C. , Badeck, F. , Lasch, P. , Lexer, M. J. , Lindner, M. , Mohr, P. , Suckow, F. (2007). Multiple‐use forest management in consideration of climate change and the interests of stackholder groups. European Journal of Forest Research, 126(2), 225–239. 10.1007/s10342-006-0114-x DOI

Gauthier, S. , Bernier, P. , & Kuuluvainen, a. (2015). Boreal forest health and global change. Science. 10.1126/science.aaa9092 PubMed DOI

Gifford, R. (2003). Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon‐cycle research. Functional Plant Biology, 30(2), 171–186. 10.1071/FP02083 PubMed DOI

Godbold, D. , Vasutova, M. , Wilkinson, A. , Edwards‐Jonášová, M. , Bambrick, M. , Smith, A. R. , Pavelka, M. , & Cudlin, P. (2015). Elevated atmospheric CO2 affects ectomicorrhizal species abundance and increases sporocarp production under field conditions. Forests, 6(12), 1256–1273. 10.3390/f6041256 DOI

Goulden, M. , McMillan, A. , Winston, G. , Rocha, A. V. , Manies, K. L. , Harden, J. W. , Bond‐Lamberty, B. P. (2011). Patterns of NPP, GPP, respiration and NEP during forest boreal succession. Global Change Biology, 17(2), 855–871. 10.1111/j.1365-2486.2010.02274.x DOI

Granier, A. , Breda, N. , Longdoz, B. , Gross, P. , & Ngao, J. (2008). Ten years of fluxes and stand growth in a young beech forest at Hesse. Annals of Forest Science, 65(7), 704 10.1051/forest:2008052 DOI

Granier, A. , Reichstein, M. , Brèda, N. , Falge, E. , Ciais, P. , Grünwald, T. , et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143(1‐2), 123–145. 10.1016/j.agrformet.2006.12.004 DOI

Grant, R. F. , Black, T. A. , Humphreys, E. R. , & Morgenstern, K. (2007). Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas‐fir forest: Testing a mathematical model with eddy covariance measurements along a forest chronosequence. Tree Physiology, 27, 115–131. PubMed

Hamilton, J. , Thomas, R. , & DeLucia, E. (2001). Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant, Cell and Environment, 24(9), 975–982. 10.1046/j.0016-8025.2001.00730.x DOI

Harmon, M. E. , Ferrell, W. K. , & Franklin, J. F. (1990). Effects on carbon storage of conversion of old growth forests to young forests. Science, 247, 699–702. PubMed

Hartley, I. P. , Armstrong, A. F. , Murthy, R. , Barron‐Gafford, G. , Ineson, P. , & Atkin, O. K. (2006). The dependence of respiration on photosynthetic substrate supply and temperature: Integrating leaf, soil and ecosystem measurements. Global Change Biology, 12(10), 1954–1968. 10.1111/j.1365-2486.2006.01214.x DOI

Hein, S. , & Dhote, J. (2006). Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Annals of Forest Science, 63, 457–467.

Hempel, S. , Frieler, K. , Warszawski, J. , Schewe, J. , & Piontek, F. (2013). A trend‐preserving bias correction—The ISI‐MIP approach. Earth System Dynamics, 4(2), 219–236. 10.5194/esd-4-219-2013 DOI

Hidy, D. , Barcza, Z. , Marjanović, H. , Ostrogović Sever, M. Z. , Dobor, L. , Gelybó, G. , et al. (2016). Terrestrial ecosystem process model Biome‐BGCMuSo v4.0: Summary of improvements and new modeling possibilities. Geoscientific Model Development, 9(12), 4405–4437. 10.5194/gmd-9-4405-2016 DOI

Huang, J. , Bergeron, Y. , Berninger, F. , Zhai, L. , Tardif, J. C. , & Denneler, B. (2013). Impact of future climate on radial growth of four major boreal tree species in the eastern Canadian boreal forest. PLoS One, 8(2), e56758 10.1371/journal.pone.0056758 PubMed DOI PMC

Hyvönen, R. , Ågren, G. , Linder, S. , Persson, T. , Francesca Cotrufo, M. , Ekblad, A. , et al. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytologist, 173(3), 463–480. 10.1111/j.1469-8137.2007.01967.x PubMed DOI

Ibrom, A. , Jarvis, P. , Clement, R. , Morgenstern, K. , Oltchev, A. , Medlyn, B. E. , et al. (2006). A comparative analysis of simulated and observed photosynthetic CO2 . Tree Physiology, 26(7), 845–864. 10.1093/treephys/26.7.845 PubMed DOI

Intergovernmental Panel on Climate Change (IPCC) (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, NGGIP Publications, IGES, Japan.

Jarvis, P. (1976). The interpretation of the variants in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London, 273, 593–610. PubMed PMC

Jeong, S.‐J. , Medvigy, D. , Shevliakova, E. , & Malyshev, S. (2013). Predicting changes in temperate forest budburst using continental‐scale observations and models. Geophysical Research Letters, 40, 359–364. 10.1029/2012Gl054431 DOI

Kattge, J. , Knorr, W. , Raddatz, T. , & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models. Global Change Biology, 15, 976–991.

Keenan, T. , Gray, J. , Friedl, M. , Toomey, M. , Bohrer, G. , Hollinger, D. Y. , et al. (2014). Net carbon uptake has increased through warming‐induced changes in temperate forest phenology. Nature Climate Change, 4(7), 598–604. 10.1038/NCLIMATE2253 DOI

Keenan, T. , Hollinger, D. , Bohrer, G. , Dragoni, D. , William Munger, J. , Schmid, H. P. , Richardson, A. D. (2013). Increase in forest water‐use efficiency as atmospheric carbon dioxide concentration rise. Nature, 499(7458), 324–327. 10.1038/nature12291 PubMed DOI

Keenan, T. , Prentice, I. , Canadell, J. , Williams, C. A. , Wang, H. , Raupach, M. , James Collatz, G. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7 10.1038/ncomms13428 PubMed DOI PMC

Kira, T. , & Shidei, T. (1967). Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Japanese Journal of Ecology, 17, 70–87.

Kirschbaum, M. (1999). CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling, 118, 17–59.

Kirschbaum, M. (2000). Forest growth and species distribution in a changing climate. Tree Physiology, 20, 309–322. PubMed

Kirschbaum, M. (2005). A model analysis of the interaction between forest age and forest responsiveness to increasing CO2 concentration. Tree Physiology, 25(7), 953–963. 10.1093/treephys/25.7.953 PubMed DOI

Kirschbaum, M. , Watt, M. , Tait, A. , & Ausseil, A.‐G. E. (2012). Future wood productivity of Pinus radiata in New Zealand under expected climatic changes. Global Change Biology, 18, 1342–1356.

Knohl, A. , Søe, A. , Kutsch, W. , Göckede, M. , & Buchmann, N. (2008). Representative estimates of soil and ecosystem respiration in an old beech forest. Plant and Soil, 302(1‐2), 189–202. 10.1007/s11104-007-9467-2 DOI

Kowalski, A. , Loustau, D. , Berbigier, P. , Manca, G. , Tedeschi, V. , Borghetti, M. , et al. (2004). Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biology, 10(10), 1707–1723. 10.1111/j.1365-2486.2004.00846.x DOI

Krinner, G. , Viovy, N. , de Noblet‐Ducoudrè, N. , Ogée, J. , Polcher, J. , Friedlingstein, P. , Ciais, P. , Sitch, S. , & Prentice, I. C. (2005). A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles, 19, GB1015 10.1029/2003GB002199 DOI

Landsberg, J. , & Waring, R. (1997). A generalised model for forest productivity using simplified concepts of radiation‐use‐efficiency, carbon balance and partitioning. Forest Ecology and Management, 172, 199–214.

Larcher, W. (2003). Physiological plant ecology. Berlin Heidelberg: Springer‐Verlag.

Lasch, P. , Badeck, F. W. , Suckow, F. , Lindner, M. , & Mohr, R. P. (2005). Model‐based analysis of management alternatives at stand and regional level in Brandenburg. (Germany). Forest Ecology and Management, 207(1–2), 59–74.

Lindner, M. , Fitzgerald, J. , Zimmermann, N. , Reyer, C. , Delzon, S. , van der Maaten, E. , et al. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69–83. 10.1016/j.jenvman.2014.07.030 PubMed DOI

Litton, C. , Raich, J. , & Ryan, M. (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13, 2089–2109.

Lloyd, J. , & Farquhar, G. (2007). Effects of rising temperature and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B, 363(1498), 1811–1817. 10.1098/rstb.2007.0032 PubMed DOI PMC

Lombardozzi, D. , Bonan, G. , Smith, N. , Dukes, J. S. , & Fisher, R. A. (2015). Temperature acclimation of photosynthesis and respiration: A key uncertainties in the carbon cycle‐climate feedback. Geophysical Research Letters, 42, 8624–8631. 10.1002/2015GL065934 DOI

Loustau, D. , Bosc, A. , Colin, A. , Ogee, J. , Davi, H. , Francois, C. , et al. (2005). Modeling climate change effects on the potential production of French plains forests at the sub‐regional level. Tree Physiology, 25(7), 813–823. 10.1093/treephys/25.7.813 PubMed DOI

Lu, M. , Zhou, X. , Yang, Q. , Li, H. , Luo, Y. , Fang, C. , Chen, J. , Yang, X. , & Li, B. (2013). Responses of ecosystem carbon cycle to experimental warming: A meta‐analysis. Ecology, 94(3), 726–738. 10.1890/12-0279.1 PubMed DOI

Luyssaert, S. , Inglima, I. , Jung, M. , Richardson, A. D. , Reichsteins, M. , Papale, D. , et al. (2007). CO2 balance of boreal, temperate and tropical forests derived from global database. Global Change Biology, 13(12), 2509–2537. 10.1111/j.1365-2486.2007.01439.x DOI

Makela, A. , Kolari, P. , Karimaki, J. , Nikinmaa, E. , Perämäki, M. , & Hari, P. (2006). Modelling five years of weather‐driven variation of GPP in a boreal forest. Agricultural and Forest Meteorology, 139(3‐4), 382–398. 10.1016/j.agrformet.2006.08.017 DOI

Makela, A. , & Valentine, H. (2001). The ratio of NPP to GPP: Evidence of change over the course of stand development. Tree Physiology, 21, 1015–1030. PubMed

Manzoni, S. , Taylor, P. , Richter, A. , Porporato, A. , & Ågren, G. I. (2012). Environmental and stoichiometry controls on microbial carbon‐use efficiency in soils. New Phytologist, 196(1), 79–91. 10.1111/j.1469-8137.2012.04225.x PubMed DOI

Marconi, S. , Chiti, T. , Nolè, A. , Valentini, R. , & Collalti, A. (2017). The role of respiration in estimation of net carbon cycle: Coupling soil carbon dynamics and canopy turnover in a novel version of 3D‐CMCC forest ecosystem model. Forests, 8, 220–227.

Mason, R. , Gunst, R. , & Hess, J. (2003). Statistical design and analysis of experiments, with applications to engineering and science. Carthage, MO: Wiley and Sons Publications.

McCree, K. (1970). An equation for the rate of respiration of white clover plants grown under controlled conditions In Setlik I. (Ed.), Prediction and measurement of photosynthetic productivity (pp. 221–229). The Netherlands: Pudoc, Wageningen.

McDowell, N. (2011). Mechanism linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051–1059. PubMed PMC

McSweeney, C. , & Jones, R. (2016). How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI‐MIP? Climate Services, 1, 24–29.

Medlyn, B. (2011). Comment on "drought‐induced reduction in global terrestrial net primary production from 2000 through 2009". Science, 333(6046), 1093 10.1126/science.1199544 PubMed DOI

Medlyn, B. , Duursma, R. , & Zeppel, J. (2011). Forest productivity under climate change: A checklist for evaluating model studies. Climate Change. 10.1002/wcc.108 DOI

Medlyn, B. , Zaehle, S. D. , de Kauwe, M. G. , Walker, A. P. , Dietze, M. C. , Hanson, P. J. , et al. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6), 528–534. 10.1038/nclimate2621 DOI

Mencuccini, M. , & Bonosi, L. (2001). Leaf/sapwood area ratios in Scots pine show acclimation across Europe. Canadian Journal of Forest Research, 31(3), 442–456.

Meyfroidt, P. , & Lambin, E. (2011). Global Forest transition: Prospects for end to deforestation. Annual Review of Environment and Resources, 36, 343–371.

Miller‐Rushing, A. , & Primack, R. (2008). Global warming and flowering times in Thoreau's concord: A community perspective. Ecology, 89, 332–341. PubMed

Monteith, J. (1965). Evaporation and environment. 19th Symposia of the Society for Experimental Biology, 19, 205–234. PubMed

Monteith, J. (1972). Solar radiation and productivity in tropical ecosystem. Journal of Applied Ecology, 9, 747–766.

Morales, P. , Hickler, T. , Rowell, D. , Smith, B. , & Sykes, M. T. (2007). Changes in European ecosystems productivity and carbon balance driven by regional climate model output. Global Change Biology, 13(1), 108–122. 10.1111/j.1365-2486.2006.01289.x DOI

Moss, R. , Edmonds, J. , & Hibbard, K. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. PubMed

Nabuurs, G.‐J. , Pussinen, A. , Karjalainen, T. , Erhard, M. , & Kramer, K. (2002). Stemwood volume increment changes in European forest due to climate change: A simulation study with the EFISCEN model. Global Change Biology, 8(4), 304–316. 10.1046/j.1354-1013.2001.00470.x DOI

Naudts, K. , Chen, Y. , McGrath, J. , Ryder, J. , Valade, A. , Otto, J. , Luyssaert, S. (2016). Europe's forest management did not mitigate climate changing warming. Science, 351(6273), 597–600. 10.1125/science.aac9976 PubMed DOI

Naudts, K. , Ryder, J. , McGrath, M. , Otto, J. , Chen, Y. , Valade, A. , et al. (2015). A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geoscientific Model Development, 8(7), 2035–2065. 10.5194/gmd-8-2035-2015 DOI

Nemani, R. , Hashimoto, H. , Votava, P. , Melton, F. , Wang, W. , Michaelis, A. , Mutch, L. , Milesi, C. , Hiatt, S. , & White, M. (2009). Monitoring and forecasting ecosystem dynamics using terrestrial observation and prediction system (TOPS). Remote Sensing of Environment, 113(7), 1497–1509. 10.1016/j.rse.2008.06.017 DOI

Noce, S. , Collalti, A. , & Santini, M. (2017). Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecology and Evolution. 10.1002/ece3.3427 PubMed DOI PMC

Noce, S. , Collalti, A. , Valentini, R. , & Santini, M. (2016). Hot Spot maps of forest presence in the Mediterranean Basin. iForest ‐ Biogeosciences & Forestry, 9, 766–774–. 10.3832/ifor1802-009 DOI

Nolè, A. , Collalti, A. , Borghetti, M. , Chiesi, M. , Chirici, G. , Magnani, F. , et al. (2015). The role of managed forest ecosystems: A modelling based approach In Valentini R. & Miglietta F. (Eds.), The greenhouse gas balance of Italy (pp. 71–85). Berlin‐Heidelberg: Springer‐Verlag.

Nolè, A. , Collalti, A. , Magnani, F. , Duce, P. , Ferrara, A. , Mancino, G. , Marras, S. , Sirca, C. , Spano, D. , & Borghetti, M. (2013). Assessing temporal variation of primary and ecosystem production in two Mediterranean forests using a modified 3‐PG model. Annals of Forest Science, 70(7), 729–741. 10.1007/s13595-013-0315-7 DOI

Noormets, A. , Epron, D. , Domec, J. , McNulty, S. G. , Fox, T. , Sun, G. , King, J. S. (2015). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. 10.1016/j.foreco.2015.05.019 DOI

Norby, R. , DeLucia, E. , Gielen, B. , Calfapietra, C. , Giardina, C. P. , King, J. S. , et al. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18,052–18,056. 10.1073/pnas.0509478102 PubMed DOI PMC

Nowak, R. , Ellsworth, D. , & Smith, S. (2004). Functional responses of plants to elevated CO2—Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253–280.

Nuutinen, T. , Matala, J. , Hirvela, H. , Härkönen, K. , Peltola, H. , Väisänen, H. , & Kellomäki, S. (2006). Regionally optimized forest management under changing climate. Climatic Change, 79(3‐4), 315–333. 10.1007/s10584-006-9098-2 DOI

Odum, E. (1969). The strategy of ecosystem development. Science, 262–270. PubMed

Papale, D. , Reichstein, M. , Aubinet, M. , Canfora, E. , Bernhofer, C. , Kutsch, W. , Longdoz, B. , Rambal, S. , Valentini, R. , Vesala, T. , Yakir, D. (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences, 3(4), 571–583. 10.5194/bg-3-571-2006 DOI

Piao, S. , Luyssaert, S. , Ciais, P. , Janssens, I. A. , Chen, A. , Cao, C. , Fang, J. , Friedlingstein, P. , Luo, Y. , & Wang, S. (2010). Forest annual carbon cost: A global‐scale analysis of autotrophic respiration. Ecology, 91(3), 652–661. 10.1890/08-2176.1 PubMed DOI

Pilegaard, K. , Ibrom, A. , Courtney, M. , Hummelshøj, P. , & Jensen, N. O. (2011). Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agricultural and Forest Meteorology, 151(7), 934–946. 10.1016/j.agrformet.2011.02.013 DOI

Pretzsch, H. , Biber, P. , Schutze, G. , Uhl, E. , & Rotzer, T. (2014). Forest stand growth dynamics in central Europe have accelerated since 1870. Nature Communications, 5(1), 4967 10.1038/ncomms5967 PubMed DOI PMC

Reich, P. B. , & Oleksyn, J. (2008). Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology Letters, 1(6), 588–597. PubMed

Reich, P. , Sendall, K. , Stefanski, A. , Wei, X. , Rich, R. L. , & Montgomery, R. A. (2016). Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531(7596), 633–636. 10.1038/nature17142 PubMed DOI

Reichstein, M. , Bahn, M. , Ciais, P. , Frank, D. , Mahecha, M. , Seneviratne, S. I. , et al. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. 10.1038/nature12350 PubMed DOI

Reichstein, M. , Falge, E. , Baldocchi, D. , Papale, D. , Aubinet, M. , Berbigier, P. , et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439. 10.1111/j.1365-2486.2005.001002.x DOI

Reyer, C. P. O. (2015). Projections of changes in forest productivity and carbon pools under environmental change—A review of stand scale modeling studies. Current Forestry Reports, 1, 53–68. 10.1007/s40725-015-0009-5 DOI

Reyer, C. P. O. , Lasch‐Born, P. , Suckow, F. , Gutsch, M. , Murawski, A. , & Pilz, T. (2014). Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science, 71(2), 211–225. 10.1007/s13595-013-0306-8 DOI

Rowland, L. , da Costa, A. C. L. , Galbraith, D. R. , Oliveira, R. S. , Binks, O. J. , Oliveira, A. A. R. , et al. (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119–122. PubMed

Ryan, M. G. (1991a). Effects of climate change on plant respiration. Ecological Applications, 1(2), 157–167. PubMed

Ryan, M. G. (1991b). A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology, 9, 255–266. PubMed

Ryan, M. , Binkley, D. , & Fowners, J. (1997). Age‐related decline in forest productivity: Pattern and process. Advances in Ecological Research, 27, 213–262.

Ryan, M. , Binkley, D. , Fownes, J. , Giardina, C. , & Senok, R. (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74(3), 393–414. 10.1890/03-4037 DOI

Santini, M. , Collalti, A. , & Valentini, R. (2014). Climate change impacts on vegetation and water cycles in the Euro‐Mediterranean region, studied by a likelihood approach. Regional Environmental Change. 10.1007/S10113-013-0582-8 DOI

Scartazza, A. , Moscatello, S. , Matteucci, G. , Battistelli, A. , & Brugnoli, E. (2013). Seasonal and inter‐annual dynamics of growth, non‐structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiology, 33(7), 730–742. 10.1093/treephys/tpt045 PubMed DOI

Schelhaas, M.‐J. , Nabuurs, G.‐J. , Hengenveld, G. , Reyer, C. , Hanewinkel, M. , Zimmermann, N. E. , Cullmann, D. (2015). Alternative forest management strategies to account for climate change‐induced productivity and species suitability changes in Europe. Regional Environmental Change, 15(8), 1581–1594. 10.1007/s10113-015-0788-z DOI

Seidl, R. , Vigl, F. , Rossler, G. , Neumann, M. , & Rammer, W. (2017). Assessing resilience of Norway spruce forests through a model‐based reanalysis of thinning trials. Forest Ecology and Management, 388, 3–12. 10.1016/j.foreco.2016.11.030 PubMed DOI PMC

Sigurdsson, B. , Roberntz, P. , Freeman, M. , Næss, M. , Saxe, H. , Thorgeirsson, H. , Linder, S. (2002). Impact studies on Nordic forests: Effects of elevated CO2 and fertilization on gas exchange. Canadian Journal of Forest Research, 32(5), 779–788. 10.1139/x01-114 DOI

Sitch, S. , Smith, B. , Prentice, C. , Arneth, A. , Bondeau, A. , Cramer, W. , et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185. 10.1046/j.1365-2486.2003.00569.x DOI

Skubel, R. , Altaf Arain, M. , Peichl, M. , Brodeur, J. J. , Khomik, M. , Thorne, R. , Trant, J. , & Kula, M. (2015). Age effects on the water‐use efficiency and water‐use dynamics of temperate pine plantations forests. Hydrological Processes. 10.1002/hyp.10549 DOI

Smith, N. , & Dukes, J. (2012). Plant respiration and photosynthesis in global‐scale models: Incorporating acclimation and CO2 . Global Change Biology, 19, 45–63. PubMed

Strigul, N. , Pristinski, D. , Purves, D. , Dushoff, J. , & Pacala, S. W. (2008). Scaling from trees to forests: Tractable macroscopic equations for forest dynamics. Ecological Monographs, 78, 523–545.

Tang, J. , Luyssaert, S. , Richardson, A. , Kutsch, W. , & Janssens, I. A. (2014). Steeper declines in forest photosynthesis that respiration explain age‐driven decreases in forest growth. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8856–8860. 10.1073/pnas.1320761111 PubMed DOI PMC

Terrer, C. , Vicca, S. , Hungate, B. , Phillips, R. P. , & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353(6294), 72–74. 10.1126/science.aaf4610 PubMed DOI

Thornley, J. , & Cannell, M. (2000a). Modelling the components of plant respiration: Representation and realism. Annals of Botany, 85, 55–67.

Thornley, J. , & Cannell, M. (2000b). Managing forests for wood yield and carbon storage: A theoretical study. Tree Physiology, 20(7), 477–484. 10.1093/treephys/20.7.477 PubMed DOI

Thornton, P. E. (2010). Biome BGC version 4.2: Theoretical framework of Biome‐BGC. Technical documentation.

Thornton, P. E. , Lamarque, J. , Rosenbloom, N. , & Mahowald, N. (2007). Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21, GB4018 10.1029/2006GB002868 DOI

Thornton, P. E. , Law, B. E. , Gholz, H. L. , Clark, K. L. , Falge, E. , Ellsworth, D. S. , Goldstein, A. H. , Monson, R. K. , Hollinger, D. , Falk, M. , Chen, J. , & Sparks, J. P. (2002). Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 113(1‐4), 185–222. 10.1016/S0168-1923(02)00108-9 DOI

Tjoelker, M. , Olesksyn, J. , & Reich, P. (2001). Modelling respiration of vegetation: Evidence for a general temperature‐dependent Q10. Global Change Biology, 7(2), 223–230. 10.1046/j.1365-2486.2001.00397.x DOI

Tjoelker, M. G. , Oleskyn, J. , & Reich, P. (1999). Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biology, 49, 679–691.

Trumbore, S. (2006). Carbon respired by terrestrial ecosystems — Recent progress and challenges. Global Change Biology, 12, 141–153.

Vacchiano, G. , Ascoli, D. , Berzaghi, F. , Lucas‐Borja, M. E. , Caignard, T. , Collalti A., et al. (2018). Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 376, 40–53. 10.1016/j.ecolmodel.2018.03.004 DOI

Vanninen, P. , & Mäkelä, A. (2005). Carbon budget for scots pine trees: Effects of size, competition and size fertility on growth allocation and production. Tree Physiology, 25(1), 17–30. PubMed

Verburg, P. , Larsen, J. , & Johnson, D. (2005). Impacts of an anomalously warm year on soil CO2 efflux in an experimentally manipulated tallgrass prairie ecosystems. Global Change Biology, 11(10), 1720–1732. 10.1111/j.1365-2486.2005.001032.x DOI

Veroustraete, F. (1994). On the use of ecosystem modelling for the interpretation of climate change effects at the ecosystem level. Ecological Modelling, 75‐76, 221–237.

Veroustraete, F. , Sabbe, H. , & Eerens, H. (2002). Estimation of carbon mass fluxes over Europe using C‐Fix model and Euroflux data. Remote Sensing of Environment, 83(3), 376–399. 10.1016/S0034-4257(02)00043-3 DOI

Vesala, T. , Suni, T. , Rannik, U. , Keronen, P. , Markkanen, T. , Sevanto, S. , et al. (2005). Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles, 19, GB2001 10.1029/2004GB002316 DOI

Vicca, S. , Luyssaert, S. , Peñuelas, J. , Campioli, M. , Chapin, F. S. III , Ciais, P. , et al. (2012). Fertile forests produce biomass more efficiently. Ecology Letters, 15(6), 520–526. 10.1111/j.1461-0248.2012.01775.x PubMed DOI

van Vuuren, D. , Edmonds, J. , Kainuma, M. , Riahi, K. , Thomson, A. , Hibbard, K. , et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1‐2), 5–31. 10.1007/s10584-011-0148-z DOI

Wang, W. , Pend, C. , Kneeshaw, D. , Larocque, G. R. , Lei, X. , Zhu, Q. , Song, X. , & Tong, Q. (2013). Modelling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change. Canadian Journal of Forest Research, 43(5), 469–479. 10.1139/cjfr-2012-0320 DOI

Waring, R. , Landsberg, J. , & Williams, M. (1998). Net primary production of forests: A constant fraction of gross primary production? Tree Physiology, 18, 129–134. PubMed

Waring, R. , & McDowell, N. (2002). Use of a physiological process model with forestry yield tables to set limits on annual carbon balances. Tree Physiology, 22, 179–188. PubMed

Warszawski, L. , Frieler, K. , Huber, V. , Piontek, F. , Serdeczny, O. , & Schewe, J. (2014). The Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP): Project framework. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3228–3232. 10.1073/pnas.1312330110 PubMed DOI PMC

Way, D. , & Sage, R. (2008). Elevated growth temperatures reduce the carbon gain of black spruce Picea mariana (mill.) BSP. Global Change Biology, 14, 624–636.

Wilkinson, M. , Crow, P. , Eaton, E. , & Morison, J. (2016). Effects of management thinning on CO2 exchange by a plantation oak woodland in south‐eastern England. Biogeosciences. 10.5194/bg-13-2367-2016 DOI

Wu, C. , Liang, N. , Sha, L. , Xu, X. , Zhang, Y. , Lu, H. , Song, L. , Song, Q. , & Xie, Y. (2016). Heterotrophic respiration does not acclimate to continuous warming in subtropical forest. Scientific Reports, 6(1). 10.1038/srep21561 PubMed DOI PMC

Wu, J. , Larsen, K. , van der Linden, L. , Beier, C. , Pilegaard, K. , & Ibrom, A. (2013). Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agricultural and Forest Meteorology, 181, 94–107. 10.1016/j.agrformet.2013.07.012 DOI

Xiao, C. , Yuste, J. , Janssens, I. , Roskams, P. , Nachtergale, L. , Carrara, A. , Sanchez, B. Y. , & Ceulemans, R. (2003). Above and belowground biomass and net primary production in a 73‐year old Scots pine forest. Tree Physiology, 23(8), 505–516. 10.1093/treephys/23.8.505 PubMed DOI

Yue, C. , Ciais, P. , Luyssaert, S. , Li, W. , McGrath, M. J. , Chang, J. , Peng, S. (2017). Representing anthropogenic gross land use change, wood harvest and forest age dynamics in a global vegetation model ORCHIDEE‐MICT (r4259). Geoscientific Model Development Discussion, 1–38. 10.5194/gmd-2017-118 DOI

Zaehle, S. , Jones, C. , Houlton, B. , Lamarque, J.‐F. , & Robertson, E. (2015). Nitrogen availability reduces CMIP5 projections of twenty‐first‐century land carbon uptake. Journal of Climate, 28(6), 2494–2511. 10.1175/JCLI-D-13-00776.1 DOI

Zaehle, S. S. , Prentice, I. C. , Liski, J. , Cramer, W. , Erhard, M. , Hickler, T. , Smith, B. (2006). The importance of age‐related decline in forest NPP for modelling regional carbon balances. Ecological Applications, 16(4), 1555–1574. 10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2 PubMed DOI

Zahele, S. , Medlyn, B. , De Kauwe, M. , Walker, A. , Dietze, M. C. , Hickler, T. , et al. (2014). Evaluation of 11 terrestrial carbon‐nitrogen cycle models against observations from two temperate free‐air CO2 enrichment studies. New Phytologist, 202(3), 803–822. 10.1111/nph.12697 PubMed DOI PMC

Zhang, Y. , Xu, M. , Chen, H. , & Adams, J. (2009). Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography, 18, 280–290.

Zhang, Y. , Yu, G. , Yang, J. , Wimberly, M. C. , Zhang, X. Z. , Tao, J. , Jiang, Y. , & Zhu, J. (2013). Climate‐driven global changes in carbon use efficiency. Global Ecology and Biogeography, 23(2), 144–155. 10.1111/geb.12086 DOI

Zhang, Z. , Zhang, R. , Cescatti, A. , Wohlfahrt, G. , Buchmann, N. , Zhu, J. , Chen, G. , Moyano, F. , Pumpanen, J. , Hirano, T. , Takagi, K. , & Merbold, L. (2017). Effect of climate warming on the annual terrestrial net ecosystems CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 7(1), 3108 10.1038/s41598-017-03386-5 PubMed DOI PMC

Zhou, X. , Luo, Y. , Gao, C. , Verburg, P. S. J. , Arnone, J. A. III , Darrouzet‐Nardi, A. , Schimel, D. S. (2010). Concurred and lagged impacts of an anomalously warm year on autotrophic and heterotrophic components of soil respiration: A deconvolution analysis. New Phytologist, 187(1), 184–198. 10.1111/j.1469-8137.2010.03256.x PubMed DOI

Zhu, Z. , Piao, S. , Myneni, R. B. , Huang, M. , Zeng, Z. , Canadell, J. G. , et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791–795. 10.1038/nclimate3004 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...