Tackling unresolved questions in forest ecology: The past and future role of simulation models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Y 895
Austrian Science Fund FWF - Austria
PubMed
33976773
PubMed Central
PMC8093733
DOI
10.1002/ece3.7391
PII: ECE37391
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.
Department of Ecology and Environmental Sciences Palacký University Olomouc Olomouc Czech Republic
DISAA Università degli Studi di Milano Milano Italy
EPHE CEFE CNRS Univ Montpellier Univ Paul Valéry Montpellier IRD Montpellier France
Forest Ecology Institute of Terrestrial Ecosystems ETH Zürich Zurich Switzerland
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Helmholtz Centre for Environmental Research UFZ Leipzig Germany
INRAE CIRAD CNRS AMAP Univ Montpellier Montpellier France
Institute of Environmental Systems Research Osnabrück University Osnabrück Germany
Institute of Silviculture University of Natural Resources and Life Sciences Vienna Austria
Potsdam Institute for Climate Impact Research Member of the Leibniz Association Potsdam Germany
SBiK F Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
TUM School of Life Sciences Technical University of Munich Freising Germany
University of Natural Resources and Life Sciences Vienna Austria
Zobrazit více v PubMed
Albrich, K. , Rammer, W. , Turner, M. G. , Ratajczak, Z. , Braziunas, K. H. , Hansen, W. D. , & Seidl, R. (2020). Simulating forest resilience: A review. Global Ecology and Biogeography, 29(12), 2082–2096. 10.1111/geb.13197 PubMed DOI PMC
Alo, C. A. , & Wang, G. (2008). Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. Journal of Geophysical Research: Biogeosciences, 113(G1), 10.1029/2007JG000528 DOI
Ammer, C. , Fichtner, A. , Fischer, A. , Gossner, M. M. , Meyer, P. , Seidl, R. , Thomas, F. M. , Annighöfer, P. , Kreyling, J. , Ohse, B. , Berger, U. , Feldmann, E. , Häberle, K.‐H. , Heer, K. , Heinrichs, S. , Huth, F. , Krämer‐Klement, K. , Mölder, A. , Müller, J. , … Wagner, S. (2018). Key ecological research questions for Central European forests. Basic and Applied Ecology, 32, 3–25. 10.1016/j.baae.2018.07.006 DOI
Andela, N. , Morton, D. C. , Giglio, L. , Chen, Y. , van der Werf, G. R. , Kasibhatla, P. S. , DeFries, R. S. , Collatz, G. J. , Hantson, S. , Kloster, S. , Bachelet, D. , Forrest, M. , Lasslop, G. , Li, F. , Mangeon, S. , Melton, J. R. , Yue, C. , & Randerson, J. T. (2017). A human‐driven decline in global burned area. Science, 356, 1356–1362. 10.1126/science.aal4108 PubMed DOI PMC
Araújo, M. B. , Anderson, R. P. , Márcia Barbosa, A. , Beale, C. M. , Dormann, C. F. , Early, R. , Garcia, R. A. , Guisan, A. , Maiorano, L. , Naimi, B. , O’Hara, R. B. , Zimmermann, N. E. , & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5(1), eaat4858. 10.1126/sciadv.aat4858 PubMed DOI PMC
Araújo, M. B. , & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. 10.1016/j.tree.2006.09.010 PubMed DOI
Araújo, M. B. , & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28(5), 693–695. 10.1111/j.2005.0906-7590.04253.x DOI
Ascoli, D. , Maringer, J. , Hacket‐Pain, A. , Conedera, M. , Drobyshev, I. , Motta, R. , Cirolli, M. , Kantorowicz, W. , Zang, C. , Schueler, S. , Croisé, L. , Piussi, P. , Berretti, R. , Palaghianu, C. , Westergren, M. , Lageard, J. G. A. , Burkart, A. , Gehrig Bichsel, R. , Thomas, P. A. , … Vacchiano, G. (2017). Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology, 98(5), 1473. 10.1002/ecy.1785 PubMed DOI
Bahn, V. , & McGill, B. J. (2007). Can niche‐based distribution models outperform spatial interpolation? Global Ecology and Biogeography, 16(6), 733–742. 10.1111/j.1466-8238.2007.00331.x DOI
Baldocchi, D. , Falge, E. , Gu, L. , Olson, R. , Hollinger, D. , Running, S. , & Wofsy, S. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11), 2415–2434. 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 DOI
Ball, J. T. , Woodrow, I. E. , & Berry, J. A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Biggins J. (Ed.), Progress in photosynthesis research (pp. 221–224). Springer. 10.1007/978-94-017-0519-6_48 DOI
Barry, S. , & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43(3), 413–423. 10.1111/j.1365-2664.2006.01136.x DOI
Bartlett, M. K. , Scoffoni, C. , & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta‐analysis. Ecology Letters, 15(5), 393–405. 10.1111/j.1461-0248.2012.01751.x PubMed DOI
Bellassen, V. , Le Maire, G. , Dhôte, J. F. , Ciais, P. , & Viovy, N. (2010). Modelling forest management within a global vegetation model—Part 1: Model structure and general behaviour. Ecological Modelling, 221(20), 2458–2474. 10.1016/j.ecolmodel.2010.07.008 DOI
Bertrand, R. , Perez, V. , & Gégout, J.‐C. (2012). Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: The case of Quercus pubescens in France. Global Change Biology, 18(8), 2648–2660. 10.1111/j.1365-2486.2012.02679.x DOI
Berzaghi, F. , Longo, M. , Ciais, P. , Blake, S. , Bretagnolle, F. , Vieira, S. , Scaranello, M. , Scarascia‐Mugnozza, G. , & Doughty, C. E. (2019). Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience, 1, 10.1038/s41561-019-0395-6 DOI
Berzaghi, F. , Verbeeck, H. , Nielsen, M. R. , Doughty, C. E. , Bretagnolle, F. , Marchetti, M. , & Scarascia‐Mugnozza, G. (2018). Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles – the potential of vegetation models. Ecography, 41, 1934–1954. 10.1111/ecog.03309 DOI
Bohn, F. J. , Frank, K. , & Huth, A. (2014). Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278, 9–17. 10.1016/j.ecolmodel.2014.01.021 DOI
Bohn, F. J. , & Huth, A. (2017). The importance of forest structure to biodiversity–productivity relationships. Royal Society Open Science, 4, 160521. 10.1098/rsos.160521 PubMed DOI PMC
Bohn, F. J. , May, F. , & Huth, A. (2018). Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests. Biogeosciences, 15(6), 1795–1813. 10.5194/bg-15-1795-2018 DOI
Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. 10.1126/science.1155121 PubMed DOI
Bonan, G. B. , Williams, M. , Fisher, R. A. , & Oleson, K. W. (2014). Modeling stomatal conductance in the earth system: Linking leaf water‐use efficiency and water transport along the soil–plant–atmosphere continuum. Geoscientific Model Development, 7(5), 2193–2222. 10.5194/gmd-7-2193-2014 DOI
Bondeau, A. , Smith, P. C. , Zaehle, S. , Schaphoff, S. , Lucht, W. , Cramer, W. , Gerten, D. , Lotze‐campen, H. , Müller, C. , Reichstein, M. , & Smith, B. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13, 679–706. 10.1111/j.1365-2486.2006.01305.x DOI
Booth, T. H. , Nix, H. A. , Busby, J. R. , & Hutchinson, M. F. (2014). bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20(1), 1–9. 10.1111/ddi.12144 DOI
Bossel, H. , & Krieger, H. (1991). Simulation model of natural tropical forest dynamics. Ecological Modelling, 59(1), 37–71. 10.1016/0304-3800(91)90127-M DOI
Botella, C. , Joly, A. , Bonnet, P. , Monestiez, P. , & Munoz, F. (2018). Species distribution modeling based on the automated identification of citizen observations. Applications in Plant Sciences, 6(2), e1029. 10.1002/aps3.1029 PubMed DOI PMC
Botkin, D. B. , Janak, J. F. , & Wallis, J. R. (1972). Some ecological consequences of a computer model of forest growth. Journal of Ecology, 60(3), 849–872. 10.2307/2258570 DOI
Boysen, L. R. , Lucht, W. , Gerten, D. , & Heck, V. (2016). Impacts devalue the potential of large‐scale terrestrial CO2 removal through biomass plantations. Environmental Research Letters, 11(9), 95010. 10.1088/1748-9326/11/9/095010 DOI
Brede, B. , Lau, A. , Bartholomeus, H. , & Kooistra, L. (2017). Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors, 17, 2371. 10.3390/s17102371 PubMed DOI PMC
Brienen, R. J. W. , Phillips, O. L. , Feldpausch, T. R. , Gloor, E. , Baker, T. R. , Lloyd, J. , Lopez‐Gonzalez, G. , Monteagudo‐Mendoza, A. , Malhi, Y. , Lewis, S. L. , Vásquez Martinez, R. , Alexiades, M. , Álvarez Dávila, E. , Alvarez‐Loayza, P. , Andrade, A. , Aragão, L. E. O. C. , Araujo‐Murakami, A. , Arets, E. J. M. M. , Arroyo, L. , … Zagt, R. J. (2015). Long‐term decline of the Amazon carbon sink. Nature, 519, 344–348. 10.1038/nature14283 PubMed DOI
Broennimann, O. , Treier, U. A. , Müller‐Schärer, H. , Thuiller, W. , Peterson, A. T. , & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10(8), 701–709. 10.1111/j.1461-0248.2007.01060.x PubMed DOI
Brovkin, V. , van Bodegom, P. M. , Kleinen, T. , Wirth, C. , Cornwell, W. K. , Cornelissen, J. H. C. , & Kattge, J. (2012). Plant‐driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 9, 565–576. 10.5194/bg-9-565-2012 DOI
Bruelheide, H. , Dengler, J. , Jiménez‐Alfaro, B. , Purschke, O. , Hennekens, S. M. , Chytrý, M. , Pillar, V. D. , Jansen, F. , Kattge, J. , Sandel, B. , Aubin, I. , Biurrun, I. , Field, R. , Haider, S. , Jandt, U. , Lenoir, J. , Peet, R. K. , Peyre, G. , Sabatini, F. M. , … Zverev, A. (2019). sPlot – a new tool for global vegetation analyses. Journal of Vegetation Science, 30(2), 161–186. 10.1111/jvs.12710 DOI
Bugmann, H. K. M. (1996). A simplified forest model to study species composition along climate gradients. Ecology, 77(7), 2055–2074. 10.2307/2265700 DOI
Bugmann, H. (2001). A review of forest gap models. Climatic Change, 51(3–4), 259–305. 10.1023/A:1012525626267 DOI
Bugmann, H. (2014). Forests in a greenhouse atmosphere: Predicting the unpredictable? In Coomes D. A., Burslem D. F. R. P., & Simonson W. D. (Eds.), Forests and Global Change (pp. 195–238). .
Bugmann, H. , & Bigler, C. (2011). Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia, 165(2), 533–544. 10.1007/s00442-010-1837-4 PubMed DOI
Bugmann, H. , & Fischlin, A. (1996). Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change, 34(2), 201–211. 10.1007/BF00224631 DOI
Bugmann, H. , & Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change, 1(3), 112–125. 10.1007/s101130000015 DOI
Bugmann, H. , Seidl, R. , Hartig, F. , Bohn, F. , Brůna, J. , Cailleret, M. , François, L. , Heinke, J. , Henrot, A.‐J. , Hickler, T. , Hülsmann, L. , Huth, A. , Jacquemin, I. , Kollas, C. , Lasch‐Born, P. , Lexer, M. J. , Merganič, J. , Merganičová, K. , Mette, T. , … Reyer, C. P. O. (2019). Tree mortality submodels drive simulated long‐term forest dynamics: Assessing 15 models from the stand to global scale. Ecosphere, 10(2), e02616. 10.1002/ecs2.2616 PubMed DOI PMC
Bugmann, H. K. M. , Yan, X. , Sykes, M. T. , Martin, P. , Lindner, M. , Desanker, P. V. , & Cumming, S. G. (1996). A comparison of forest gap models: Model structure and behaviour. Climatic Change, 34(2), 289–313. 10.1007/BF00224640 DOI
Bussotti, F. , Pollastrini, M. , Gessler, A. , & Luo, Z.‐B. (2018). Experiments with trees: From seedlings to ecosystems. Environmental and Experimental Botany, Experiments with Trees: From Seedlings to Ecosystems, 152, 1–6. 10.1016/j.envexpbot.2018.04.012 DOI
Butchart, S. H. M. , Walpole, M. , Collen, B. , van Strien, A. , Scharlemann, J. P. W. , Almond, R. E. A. , Baillie, J. E. M. , Bomhard, B. , Brown, C. , Bruno, J. , Carpenter, K. E. , Carr, G. M. , Chanson, J. , Chenery, A. M. , Csirke, J. , Davidson, N. C. , Dentener, F. , Foster, M. , Galli, A. , … Watson, R. (2010). Global biodiversity: Indicators of recent declines. Science, 328(5982), 1164–1168. 10.1126/science.1187512 PubMed DOI
Bykova, O. , Chuine, I. , Morin, X. , & Higgins, S. I. (2012). Temperature dependence of the reproduction niche and its relevance for plant species distributions. Journal of Biogeography, 39(2), 2191–2200. 10.1111/j.1365-2699.2012.02764.x DOI
Chauvet, M. , Kunstler, G. , Roy, J. , & Morin, X. (2017). Using a forest dynamics model to link community assembly processes and traits structure. Functional Ecology, 31(7), 1452–1461. 10.1111/1365-2435.12847 DOI
Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling, 124(2–3), 233–254. 10.1016/S0304-3800(99)00171-4 DOI
Chave, J. (2013). The problem of pattern and scale in ecology: What have we learned in 20 years? Ecology Letters, 16, 4–16. 10.1111/ele.12048 PubMed DOI
Chave, J. , Andalo, C. , Brown, S. , Cairns, M. A. , Chambers, J. Q. , Eamus, D. , Fölster, H. , Fromard, F. , Higuchi, N. , Kira, T. , Lescure, J.‐P. , Nelson, B. W. , Ogawa, H. , Puig, H. , Riéra, B. , & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. 10.1007/s00442-005-0100-x PubMed DOI
Chave, J. , Réjou‐Méchain, M. , Búrquez, A. , Chidumayo, E. , Colgan, M. S. , Delitti, W. B. C. , Duque, A. , Eid, T. , Fearnside, P. M. , Goodman, R. C. , Henry, M. , Martínez‐Yrízar, A. , Mugasha, W. A. , Muller‐Landau, H. C. , Mencuccini, M. , Nelson, B. W. , Ngomanda, A. , Nogueira, E. M. , Ortiz‐Malavassi, E. , … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. 10.1111/gcb.12629 PubMed DOI
Cheaib, A. , Badeau, V. , Boe, J. , Chuine, I. , Delire, C. , Dufrêne, E. , François, C. , Gritti, E. S. , Legay, M. , Pagé, C. , Thuiller, W. , Viovy, N. , & Leadley, P. (2012). Climate change impacts on tree ranges: Model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 15, 533–544. 10.1111/j.1461-0248.2012.01764.x PubMed DOI
Choat, B. , Jansen, S. , Brodribb, T. J. , Cochard, H. , Delzon, S. , Bhaskar, R. , Bucci, S. J. , Feild, T. S. , Gleason, S. M. , Hacke, U. G. , Jacobsen, A. L. , Lens, F. , Maherali, H. , Martínez‐Vilalta, J. , Mayr, S. , Mencuccini, M. , Mitchell, P. J. , Nardini, A. , Pittermann, J. , … Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491(7426), 752–755. 10.1038/nature11688 PubMed DOI
Chuine, I. , & Beaubien, E. G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4, 500–510. 10.1046/j.1461-0248.2001.00261.x DOI
Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington.
Coffin, D. P. , & Lauenroth, W. K. (1990). A gap dynamics simulation model of succession in a semiarid grassland. Ecological Modelling, 49(3), 229–266. 10.1016/0304-3800(90)90029-G DOI
Collalti, A. , Ibrom, A. , Stockmarr, A. , Cescatti, A. , Alkama, R. , Fernández‐Martínez, M. , Matteucci, G. , Sitch, S. , Friedlingstein, P. , Ciais, P. , Goll, D. S. , Nabel, J. E. M. S. , Pongratz, J. , Arneth, A. , Haverd, V. , & Prentice, I. C. (2020). Forest production efficiency increases with growth temperature. Nature Communications, 11(1), 5322. 10.1038/s41467-020-19187-w PubMed DOI PMC
Collalti, A. , & Prentice, I. C. (2019). Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology, 39(8), 1473–1483. 10.1093/treephys/tpz034 PubMed DOI
Collalti, A. , Thornton, P. E. , Cescatti, A. , Rita, A. , Borghetti, M. , Nolè, A. , Trotta, C. , Ciais, P. , & Matteucci, G. (2019). The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 29, e01837. 10.1002/eap.1837 PubMed DOI PMC
Collalti, A. , Tjoelker, M. G. , Hoch, G. , Mäkelä, A. , Guidolotti, G. , Heskel, M. , Petit, G. , Ryan, M. G. , Battipaglia, G. , Matteucci, G. , & Prentice, I. C. (2020). Plant respiration: Controlled by photosynthesis or biomass? Global Change Biology, 26(3), 1739–1753. 10.1111/gcb.14857 PubMed DOI
Collalti, A. , Trotta, C. , Keenan, T. F. , Ibrom, A. , Bond‐Lamberty, B. , Grote, R. , Vicca, S. , Reyer, C. P. O. , Migliavacca, M. , Veroustraete, F. , Anav, A. , Campioli, M. , Scoccimarro, E. , Šigut, L. , Grieco, E. , Cescatti, A. , & Matteucci, G. (2018). Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. Journal of Advances in Modeling Earth Systems, 10(10), 2427–2452. 10.1029/2018MS001275 PubMed DOI PMC
Collatz, G. J. , Ball, J. T. , Grivet, C. , & Berry, J. A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2–4), 107–136. 10.1016/0168-1923(91)90002-8 DOI
Collier, N. , Hoffman, F. M. , Lawrence, D. M. , Keppel‐Aleks, G. , Koven, C. D. , Riley, W. J. , Mu, M. , & Randerson, J. T. (2018). The International Land Model Benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10(11), 2731–2754. 10.1029/2018MS001354 DOI
Courbaud, B. , Goreaud, F. , Dreyfus, P. H. , & Bonnet, F. R. (2001). Evaluating thinning strategies using a tree distance dependent growth model: Some examples based on the CAPSIS software “uneven‐aged spruce forests” module. Forest Ecology and Management, 145(1), 15–28. 10.1016/S0378-1127(00)00571-5 DOI
Courchamp, F. , Dunne, J. A. , Le Maho, Y. , May, R. M. , Thébaud, C. , & Hochberg, M. E. (2015). Fundamental ecology is fundamental. Trends in Ecology & Evolution, 30(1), 9–16. 10.1016/j.tree.2014.11.005 PubMed DOI
Cramer, W. , Bondeau, A. , Woodward, F. I. , Prentice, I. C. , Betts, R. A. , Brovkin, V. , & Young‐Molling, C. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373. 10.1046/j.1365-2486.2001.00383.x DOI
Dantas de Paula, M. , Groeneveld, J. , Fischer, R. , Taubert, F. , Martins, V. F. , & Huth, A. (2018). Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos, 127(10), 1526–1538. 10.1111/oik.05084 DOI
Dantas de Paula, M. , Groeneveld, J. , & Huth, A. (2015). Tropical forest degradation and recovery in fragmented landscapes — Simulating changes in tree community, forest hydrology and carbon balance. Global Ecology and Conservation, 3, 664–677. 10.1016/j.gecco.2015.03.004 DOI
Davis, M. B. , & Zabinski, C. (1992). Changes in geographical range from greenhouse warming: effects on biodiversity in forests. In Peters R. L., & Lovejoy T. E. (eds.) Global Warming and Biological Diversity (pp. 297–309). : Yale University Press.
Dawson, T. P. , Jackson, S. T. , House, J. I. , Prentice, I. C. , & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332, 53–58. 10.1126/science.1200303 PubMed DOI
DeAngelis, D. L. , & Mooij, W. M. (2005). Individual‐based modeling of ecological and evolutionary processes. Annual Review of Ecology, Evolution, and Systematics, 36, 147–168. 10.1146/annurev.ecolsys.36.102003.152644 DOI
de Groot, R. S. , Wilson, M. A. , & Boumans, R. M. J. (2002). A typology for the classification, description and valuationof ecosystem functions, goods and services. Ecological Economics, 41, 393–408.
Didion, M. , Kupferschmid, A. D. , Zingg, A. , Fahse, L. , & Bugmann, H. (2009). Gaining local accuracy while not losing generality — extending the range of gap model applications. Canadian Journal of Forest Research, 39(6), 1092–1107. 10.1139/X09-041 DOI
Dietrich, J. P. , Bodirsky, B. L. , Humpenöder, F. , Weindl, I. , Stevanović, M. , Karstens, K. , & Popp, A. (2019). MAgPIE 4 – a modular open‐source framework for modeling global land systems. Geoscientific Model Development, 12(4), 1299–1317. 10.5194/gmd-12-1299-2019 DOI
Dietze, M. C. , Serbin, S. P. , Davidson, C. , Desai, A. R. , Feng, X. , Kelly, R. , Kooper, R. , LeBauer, D. , Mantooth, J. , McHenry, K. , & Wang, D. (2014). A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. Journal of Geophysical Research: Biogeosciences, 119, (3), 286–300. 10.1002/2013JG002392 DOI
di Porcia e Brugnera, M. , Meunier, F. , Longo, M. , Moorthy, S. M. K. , Deurwaerder, H. D. , Schnitzer, S. A. , … Verbeeck, H. (2019). Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 25:3767–3780. https://doi:10.1111/gcb.14769 PubMed PMC
Disney, M. (2018). Terrestrial LiDAR: A three‐dimensional revolution in how we look at trees. New Phytologist, 222, (4), 1736–1741. 10.1111/nph.15517 PubMed DOI
Donohue, I. , Hillebrand, H. , Montoya, J. M. , Petchey, O. L. , Pimm, S. L. , Fowler, M. S. , Healy, K. , Jackson, A. L. , Lurgi, M. , McClean, D. , O'Connor, N. E. , O'Gorman, E. J. , & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172–1185. 10.1111/ele.12648 PubMed DOI
Donohue, I. , Petchey, O. L. , Montoya, J. M. , Jackson, A. L. , McNally, L. , Viana, M. , Healy, K. , Lurgi, M. , O'Connor, N. E. , & Emmerson, M. C. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421–429. 10.1111/ele.12086 PubMed DOI
Dormann, C. F. , Bobrowski, M. , Dehling, D. M. , Harris, D. J. , Hartig, F. , Lischke, H. , Moretti, M. D. , Pagel, J. , Pinkert, S. , Schleuning, M. , Schmidt, S. I. , Sheppard, C. S. , Steinbauer, M. J. , Zeuss, D. , & Kraan, C. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27(9), 1004–1016. 10.1111/geb.12759 DOI
Dormann, C. F. , Schymanski, S. J. , Cabral, J. , Chuine, I. , Graham, C. , Hartig, F. , Kearney, M. , Morin, X. , Römermann, C. , Schröder, B. , & Singer, A. (2012). Correlation and process in species distribution models: Bridging a dichotomy. Journal of Biogeography, 39(12), 2119–2131. 10.1111/j.1365-2699.2011.02659.x DOI
Doyle, T. W. (1981). The role of disturbance in the gap dynamics of a montane rain forest: An application of a tropical forest succession model. In West D. C., Shugart H. H., & Botkin D. B. (Eds.), Forest Succession: Concepts and Application (pp. 56–73). Springer. 10.1007/978-1-4612-5950-3_6 DOI
Dufour‐Kowalski, S. , Courbaud, B. , Dreyfus, P. , Meredieu, C. , & de Coligny, F. (2012). Capsis: An open software framework and community for forest growth modelling. Annals of Forest Science, 69(6), 221–233. 10.1007/s13595-011-0140-9 DOI
Dunford, R. , Harrison, P. A. , & Rounsevell, M. D. A. (2015). Exploring scenario and model uncertainty in cross‐sectoral integrated assessment approaches to climate change impacts. Climatic Change, 132(3), 417–432. 10.1007/s10584-014-1211-3 PubMed DOI PMC
Duputié, A. , Rutschmann, A. , Ronce, O. , & Chuine, I. (2015). Phenological plasticity will not help all species adapt to climate change. Global Change Biology, 21, 3062–3073. 10.1111/gcb.12914 PubMed DOI
Elith, J. , & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697. 10.1146/annurev.ecolsys.110308.120159 DOI
Elkin, C. , Gutiérrez, A. G. , Leuzinger, S. , Manusch, C. , Temperli, C. , Rasche, L. , & Bugmann, H. (2013). A 2°C warmer world is not safe for ecosystem services in the European Alps. Global Change Biology, 19(6), 1827–1840. 10.1111/gcb.12156 PubMed DOI
Estes, L. , Elsen, P. R. , Treuer, T. , Ahmed, L. , Caylor, K. , Chang, J. , Choi, J. J. , & Ellis, E. C. (2018). The spatial and temporal domains of modern ecology. Nature Ecology & Evolution, 1, 10.1038/s41559-018-0524-4 PubMed DOI
Evans, T. G. , Diamond, S. E. , & Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology, 3(1), cov056. 10.1093/conphys/cov056 PubMed DOI PMC
F. Dormann, C. , M. McPherson, J. , B. Araújo, M. , Bivand, R. , Bolliger, J. , Carl, G. , G. Davies, R. , Hirzel, A. , Jetz, W. , Daniel Kissling, W. , Kühn, I. , Ohlemüller, R. , R. Peres‐Neto, P. , Reineking, B. , Schröder, B. , M. Schurr, F. , & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. 10.1111/j.2007.0906-7590.05171.x DOI
Falge, E. , Baldocchi, D. , Tenhunen, J. , Aubinet, M. , Bakwin, P. , Berbigier, P. , Bernhofer, C. , Burba, G. , Clement, R. , Davis, K. J. , Elbers, J. A. , Goldstein, A. H. , Grelle, A. , Granier, A. , Guðmundsson, J. , Hollinger, D. , Kowalski, A. S. , Katul, G. , Law, B. E. , … Wofsy, S. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113(1‐4), 53–74. 10.1016/S0168-1923(02)00102-8 DOI
Falster, D. S. , Brännström, A. , Westoby, M. , & Dieckmann, U. (2017). Multitrait successional forest dynamics enable diverse competitive coexistence. Proceedings of the National Academy of Sciences, 114, E2719–E2728. 10.1073/pnas.1610206114 PubMed DOI PMC
Famiglietti, C. A. , Smallman, T. L. , Levine, P. A. , Flack‐Prain, S. , Quetin, G. R. , Meyer, V. , Parazoo, N. C. , Stettz, S. G. , Yang, Y. , Bonal, D. , Bloom, A. A. , Williams, M. , & Konings, A. G. (2020). Optimal model complexity for terrestrial carbon cycle prediction. Biogeosciences Discussions, 1–42, 10.5194/bg-2020-478. [Epub ahead of print]. DOI
Fedrigo, M. , Stewart, S. B. , Roxburgh, S. H. , Kasel, S. , Bennett, L. T. , Vickers, H. , & Nitschke, C. R. (2019). Predictive ecosystem mapping of South‐Eastern Australian temperate forests using lidar‐derived structural profiles and species distribution models. Remote Sensing, 11, 93. 10.3390/rs11010093 DOI
Felton, A. J. , & Smith, M. D. (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723), 20160142. 10.1098/rstb.2016.0142 PubMed DOI PMC
Fernandes, R. F. , Scherrer, D. , & Guisan, A. (2018). How much should one sample to accurately predict the distribution of species assemblages? A virtual community approach. Ecological Informatics, 48, 125–134. 10.1016/j.ecoinf.2018.09.002 DOI
Ferraz, A. , Saatchi, S. , Mallet, C. , & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests. Remote Sensing of Environment, 183, 318–333. 10.1016/j.rse.2016.05.028 DOI
Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: Where to from here? Systematic Biology, 51(2), 331–363. 10.1080/10635150252899806 PubMed DOI
Ferrier, S. , & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404. 10.1111/j.1365-2664.2006.01149.x DOI
Field, C. B. , Barros V., Stocker T. F., & Dahe Q. (Eds.) (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press. PubMed
Fischer, F. J. , Maréchaux, I. , & Chave, J. (2019). Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 223(3), 1159–1165. 10.1111/nph.15810 PubMed DOI
Fischer, R. , Armstrong, A. , Shugart, H. H. , & Huth, A. (2014). Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem exchange in a tropical forest. Environmental Modelling & Software, 52, 200–206. 10.1016/j.envsoft.2013.10.026 DOI
Fischer, R. , Bohn, F. , Dantas de Paula, M. , Dislich, C. , Groeneveld, J. , Gutiérrez, A. G. , Kazmierczak, M. , Knapp, N. , Lehmann, S. , Paulick, S. , Pütz, S. , Rödig, E. , Taubert, F. , Köhler, P. , & Huth, A. (2016). Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling, next Generation Ecological Modelling, Concepts, and Theory: Structural Realism, Emergence, and Predictions, 326, 124–133. 10.1016/j.ecolmodel.2015.11.018 DOI
Fischer, R. , Ensslin, A. , Rutten, G. , Fischer, M. , Schellenberger Costa, D. , Kleyer, M. , Hemp, A. , Paulick, S. , & Huth, A. (2015). Simulating carbon stocks and fluxes of an African tropical montane forest with an individual‐based forest model. PLoS One, 10, e0123300. 10.1371/journal.pone.0123300 PubMed DOI PMC
Fischer, R. , Knapp, N. , Bohn, F. , Shugart, H. H. , & Huth, A. (2019). The relevance of forest structure for biomass and productivity in temperate forests: New perspectives for remote sensing. Surveys in Geophysics, 40, 709–734. 10.1007/s10712-019-09519-x DOI
Fischer, R. , Rödig, E. , & Huth, A. (2018). Consequences of a reduced number of plant functional types for the simulation of forest productivity. Forests, 9(8), 460. 10.3390/f9080460 DOI
Fisher, R. A. , & Koven, C. D. (2020). Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems, 12(4), e2018MS001453. 10.1029/2018MS001453 DOI
Fisher, R. A. , Koven, C. D. , Anderegg, W. R. L. , Christoffersen, B. O. , Dietze, M. C. , Farrior, C. E. , Holm, J. A. , Hurtt, G. C. , Knox, R. G. , Lawrence, P. J. , Lichstein, J. W. , Longo, M. , Matheny, A. M. , Medvigy, D. , Muller‐Landau, H. C. , Powell, T. L. , Serbin, S. P. , Sato, H. , Shuman, J. K. , … Moorcroft, P. R. (2018). Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 24(1), 35–54. 10.1111/gcb.13910 PubMed DOI
Fisher, R. A. , Williams, M. , Do Vale, R. L. , Da Costa, A. L. , & Meir, P. (2006). Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant, Cell & Environment, 29(2), 151–165. 10.1111/j.1365-3040.2005.01407.x PubMed DOI
Fischer, R. (2013). Modellierung der Dynamik afrikanischer Tropenwälder. Analyse des Einflusses von Störungen auf tropische Wälder mit Hilfe des Waldmodells FORMIND (Dissertation, Universität Osnabrück). Retrieved from https://repositorium.ub.uniosnabrueck.de/handle/urn:nbn:de:gbv:700‐2014032112302
Fleischer, K. , Rammig, A. , De Kauwe, M. G. , Walker, A. P. , Domingues, T. F. , Fuchslueger, L. , Garcia, S. , Goll, D. S. , Grandis, A. , Jiang, M. , Haverd, V. , Hofhansl, F. , Holm, J. A. , Kruijt, B. , Leung, F. , Medlyn, B. E. , Mercado, L. M. , Norby, R. J. , Pak, B. , … Lapola, D. M. (2019). Amazon forest response to CO 2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12(9), 736–741. 10.1038/s41561-019-0404-9 DOI
Fontes, L. , Bontemps, J. D. , Bugmann, H. , van Oijen, M. , Gracia, C. , Kramer, K. , & Skovsgaard, J. P. (2010). Models for supporting forest management in a changing environment. Forest Systems, 19, 8–29.
Forkel, M. , Andela, N. , Harrison, S. P. , Lasslop, G. , van Marle, M. , Chuvieco, E. , Dorigo, W. , Forrest, M. , Hantson, S. , Heil, A. , Li, F. , Melton, J. , Sitch, S. , Yue, C. , & Arneth, A. (2019). Emergent relationships with respect to burned area in global satellite observations and fire‐enabled vegetation models. Biogeosciences, 16(1), 57–76. 10.5194/bg-16-57-2019 DOI
Fourcade, Y. , Besnard, A. G. , & Secondi, J. (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27(2), 245–256. 10.1111/geb.12684 DOI
Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16(3), 321–330. 10.1111/j.1472-4642.2010.00641.x DOI
Franklin, O. , Harrison, S. P. , Dewar, R. , Farrior, C. E. , Brännström, Å. , Dieckmann, U. , Pietsch, S. , Falster, D. , Cramer, W. , Loreau, M. , Wang, H. , Mäkelä, A. , Rebel, K. T. , Meron, E. , Schymanski, S. J. , Rovenskaya, E. , Stocker, B. D. , Zaehle, S. , Manzoni, S. , … Prentice, I. C. (2020). Organizing principles for vegetation dynamics. Nature Plants, 6(5), 444–453. 10.1038/s41477-020-0655-x PubMed DOI
Frieler, K. , Lange, S. , Piontek, F. , Reyer, C. , Schewe, J. , Warszawski, L. , Yamagata, Y. (2017). Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter‐Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development. 10.5194/gmd-10-4321-11312017 DOI
Friend, A. D. , Lucht, W. , Rademacher, T. T. , Keribin, R. , Betts, R. , Cadule, P. , & Woodward, F. I. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of National Academy of Science USA, 111(9), 3280–3285. 10.1073/pnas.1222477110 PubMed DOI PMC
Fyllas, N. M. , Bentley, L. P. , Shenkin, A. , Asner, G. P. , Atkin, O. K. , Díaz, S. , Enquist, B. J. , Farfan‐Rios, W. , Gloor, E. , Guerrieri, R. , Huasco, W. H. , Ishida, Y. , Martin, R. E. , Meir, P. , Phillips, O. , Salinas, N. , Silman, M. , Weerasinghe, L. K. , Zaragoza‐Castells, J. , & Malhi, Y. (2017). Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 20(6), 730–740. 10.1111/ele.12771 PubMed DOI
García‐Valdés, R. , Bugmann, H. , & Morin, X. (2018). Climate change‐driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions, 24(7), 906–918. 10.1111/ddi.12744 DOI
García‐Valdés, R. , Estrada, A. , Early, R. , Lehsten, V. , & Morin, X. (2020). Climate change impacts on long‐term forest productivity might be driven by species turnover rather than by changes in tree growth. Global Ecology and Biogeography, 29(8), 1360–1372. 10.1111/geb.13112 DOI
Gibbs, H. K. , Brown, S. , Niles, J. O. , & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 45023. 10.1088/1748-9326/2/4/045023 DOI
Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53(1), 7–26. 10.2307/2479933 DOI
Goetz, S. , & Dubayah, R. (2011). Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2(3), 231–244. 10.4155/cmt.11.18 DOI
Goll, D. S. , Vuichard, N. , Maignan, F. , Jornet‐Puig, A. , Sardans, J. , Violette, A. , & Ciais, P. (2017). A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific Model Development, 10(10), 3745–3770. 10.5194/gmd-10-3745-2017 DOI
Grisebach, A. (1872). Die Vegetation der Erde nach ihrer klimatischen Anordnung: Ein Abriss der vergleichenden Geographie der Pflanzen. Bd. I und II. Verlag von Wilhelm Engelmann.
Groeneveld, J. , Alves, L. F. , Bernacci, L. C. , Catharino, E. , Knogge, C. , Metzger, J. P. , Pütz, S. , & Huth, A. (2009). The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecological Modelling, 220(19), 2450–2459. 10.1016/j.ecolmodel.2009.06.015 DOI
Grossiord, C. , Sevanto, S. , Limousin, J.‐M. , Meir, P. , Mencuccini, M. , Pangle, R. E. , Pockman, W. T. , Salmon, Y. , Zweifel, R. , & McDowell, N. G. (2018). Manipulative experiments demonstrate how long‐term soil moisture changes alter controls of plant water use. Environmental and Experimental Botany, Experiments with Trees: From Seedlings to Ecosystems, 152, 19–27. 10.1016/j.envexpbot.2017.12.010 DOI
Guisan, A. , & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. 10.1111/j.1461-0248.2005.00792.x PubMed DOI
Guisan, A. , Thuiller, W. , & Zimmermann, N. E. (2017). Habitat suitability and distribution models: With applications in R. Cambridge University Press.
Guisan, A. , Tingley, R. , Baumgartner, J. B. , Naujokaitis‐Lewis, I. , Sutcliffe, P. R. , Tulloch, A. I. T. , Regan, T. J. , Brotons, L. , McDonald‐Madden, E. , Mantyka‐Pringle, C. , Martin, T. G. , Rhodes, J. R. , Maggini, R. , Setterfield, S. A. , Elith, J. , Schwartz, M. W. , Wintle, B. A. , Broennimann, O. , Austin, M. , … Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435. 10.1111/ele.12189 PubMed DOI PMC
Hantson, S. , Arneth, A. , Harrison, S. P. , Kelley, D. I. , Prentice, I. C. , Rabin, S. S. , Archibald, S. , Mouillot, F. , Arnold, S. R. , Artaxo, P. , Bachelet, D. , Ciais, P. , Forrest, M. , Friedlingstein, P. , Hickler, T. , Kaplan, J. O. , Kloster, S. , Knorr, W. , Lasslop, G. , … Yue, C. (2016). The status and challenge of global fire modelling. Biogeosciences, 13(11), 3359–3375. 10.5194/bg-13-3359-2016 DOI
Hart, S. P. , Schreiber, S. J. , & Levine, J. M. (2016). How variation between individuals affects species coexistence. Ecology Letters, 19(8), 825–838. 10.1111/ele.12618 PubMed DOI
Hartig, F. , Calabrese, J. M. , Reineking, B. , Wiegand, T. , & Huth, A. (2011). Statistical inference for stochastic simulation models – theory and application. Ecology Letters, 14(8), 816–827. 10.1111/j.1461-0248.2011.01640.x PubMed DOI
Hartig, F. , Dislich, C. , Wiegand, T. , & Huth, A. (2014). Technical Note: Approximate Bayesian parameterization of a process‐based tropical forest model. Biogeosciences, 11(4), 1261–1272. 10.5194/bg-11-1261-2014 DOI
Hartmann, H. , Moura, C. F. , Anderegg, W. R. L. , Ruehr, N. K. , Salmon, Y. , Allen, C. D. , Arndt, S. K. , Breshears, D. D. , Davi, H. , Galbraith, D. , Ruthrof, K. X. , Wunder, J. , Adams, H. D. , Bloemen, J. , Cailleret, M. , Cobb, R. , Gessler, A. , Grams, T. E. E. , Jansen, S. , … O'Brien, M. (2018). Research frontiers for improving our understanding of drought‐induced tree and forest mortality. New Phytologist, 218(1), 15–28. 10.1111/nph.15048 PubMed DOI
Heiri, C. , Bugmann, H. , Tinner, W. , Heiri, O. , & Lischke, H. (2006). A model‐based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. Journal of Ecology, 94(1), 206–216. 10.1111/j.1365-2745.2005.01072.x DOI
Hickler, T. , Prentice, I. C. , Smith, B. , Sykes, M. T. , & Zaehle, S. (2006). Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and Biogeography, 15(6), 567–577. 10.1111/j.1466-8238.2006.00254.x DOI
Hickler, T. , Vohland, K. , Feehan, J. , Miller, P. A. , Smith, B. , Costa, L. , Giesecke, T. , Fronzek, S. , Carter, T. R. , Cramer, W. , Kühn, I. , & Sykes, M. T. (2012). Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species‐based dynamic vegetation model. Global Ecology and Biogeography, 21(1), 50–63. 10.1111/j.1466-8238.2010.00613.x DOI
Hiltner, U. , Huth, A. , Bräuning, A. , Hérault, B. , & Fischer, R. (2018). Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 430, 517–525. 10.1016/j.foreco.2018.08.042 DOI
Holzwarth, F. , Kahl, A. , Bauhus, J. , & Wirth, C. (2013). Many ways to die – partitioning tree mortality dynamics in a near‐natural mixed deciduous forest. Journal of Ecology, 101(1), 220–230. 10.1111/1365-2745.12015 DOI
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press. PubMed
Humpenöder, F. , Popp, A. , Bodirsky, B. L. , Weindl, I. , Biewald, A. , Lotze‐Campen, H. , Dietrich, J. P. , Klein, D. , Kreidenweis, U. , Müller, C. , Rolinski, S. , & Stevanovic, M. (2018). Large‐scale bioenergy production: How to resolve sustainability trade‐offs? Environmental Research Letters, 13(2), 24011. 10.1088/1748-9326/aa9e3b DOI
Huston, M. , DeAngelis, D. , & Post, W. (1988). New computer models unify ecological theory. BioScience, 38(10), 682–691. 10.2307/1310870 DOI
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. 10.1101/SQB.1957.022.01.039 DOI
Huth, A. , & Ditzer, T. (2001). Long‐term impacts of logging in a tropical rain forest — a simulation study. Forest Ecology and Management, 142(1), 33–51. 10.1016/S0378-1127(00)00338-8 DOI
Huth, A. , Drechsler, M. , & Köhler, P. (2005). Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in Dipterocarp lowland rain 1250 forests. Forest Ecology and Management, 207(1), 215–232. 10.1016/j.foreco.2004.10.028 DOI
IPBES . (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Secretariat of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem.
Iversen, C. M. , McCormack, M. L. , Powell, A. S. , Blackwood, C. B. , Freschet, G. T. , Kattge, J. , Roumet, C. , Stover, D. B. , Soudzilovskaia, N. A. , Valverde‐Barrantes, O. J. , van Bodegom, P. M. , & Violle, C. (2017). A global Fine‐Root Ecology Database to address below‐ground challenges in plant ecology. New Phytologist, 215(1), 15–26. 10.1111/nph.14486 PubMed DOI
Iverson, L. R. , Schwartz, M. W. , & Prasad, A. M. (2004). Potential colonization of newly available tree‐species habitat under climate change: An analysis for five eastern US species. Landscape Ecology, 19(7), 787–799. 10.1007/s10980-005-3990-5 DOI
Ives, A. R. , & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317(5834), 58–62. 10.1126/science.1133258 PubMed DOI
Jägermeyr, J. , Gerten, D. , Heinke, J. , Schaphoff, S. , Kummu, M. , & Lucht, W. (2015). Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrology and Earth System Sciences, 19(7), 3073–3091. 10.5194/hess-19-3073-2015 DOI
Jarvis, P. G. (Ed.). (1998). European forests and global change: The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, U.K.
Jenkins, C. N. , Pimm, S. L. , & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, 110(28), E2602–E2610. 10.1073/pnas.1302251110 PubMed DOI PMC
Joetzjer, E. , Pillet, M. , Ciais, P. , Barbier, N. , Chave, J. , Schlund, M. , & Poulter, B. (2017). Assimilating satellite‐based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 44(13), 6823–6832. 10.1002/2017GL074150 DOI
Johnson, M. O. , Galbraith, D. , Gloor, M. , De Deurwaerder, H. , Guimberteau, M. , Rammig, A. , Thonicke, K. , Verbeeck, H. , von Randow, C. , Monteagudo, A. , Phillips, O. L. , Brienen, R. J. W. , Feldpausch, T. R. , Lopez Gonzalez, G. , Fauset, S. , Quesada, C. A. , Christoffersen, B. , Ciais, P. , Sampaio, G. , … Baker, T. R. (2016). Variation in stem mortality rates determines patterns of above‐ground biomass in Amazonian forests: Implications for dynamic global vegetation models. Global Change Biology, 22(12), 3996–4013. 10.1111/gcb.13315 PubMed DOI PMC
Journé, V. , Barnagaud, J.‐Y. , Bernard, C. , Crochet, P.‐A. , & Morin, X. (2020). Correlative climatic niche models predict real and virtual species distributions equally well. Ecology, 101(1), e02912. 10.1002/ecy.2912 PubMed DOI
Jucker, T. , Bongalov, B. , Burslem, D. F. R. P. , Nilus, R. , Dalponte, M. , Lewis, S. L. , Phillips, O. L. , Qie, L. , & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. 10.1111/ele.12964 PubMed DOI PMC
Jucker, T. , Caspersen, J. , Chave, J. , Antin, C. , Barbier, N. , Bongers, F. , Dalponte, M. , van Ewijk, K. Y. , Forrester, D. I. , Haeni, M. , Higgins, S. I. , Holdaway, R. J. , Iida, Y. , Lorimer, C. , Marshall, P. L. , Momo, S. , Moncrieff, G. R. , Ploton, P. , Poorter, L. , … Coomes, D. A. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), 177–190. 10.1111/gcb.13388 PubMed DOI PMC
Jung, M. , Reichstein, M. , & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001–2013. 10.5194/bg-6-2001-2009 DOI
Justice, C. O. , Townshend, J. R. G. , Vermote, E. F. , Masuoka, E. , Wolfe, R. E. , Saleous, N. , Morisette, J. T. (2002). An overview of MODIS Land data processing and product status. Remote Sensing of Environment, the Moderate Resolution Imaging Spectroradiometer (MODIS): a New Generation of Land Surface Monitoring, 83(1), 3–15. 10.1016/S0034-1306-4257(02)00084-6 DOI
Kattge, J. , Bönisch, G. , Díaz, S. , Lavorel, S. , Prentice, I. C. , Leadley, P. , Tautenhahn, S. , Werner, G. D. A. , Aakala, T. , Abedi, M. , Acosta, A. T. R. , Adamidis, G. C. , Adamson, K. , Aiba, M. , Albert, C. H. , Alcántara, J. M. , Alcázar C, C. , Aleixo, I. , Ali, H. , … Wirth, C. (2020). TRY plant trait database – enhanced coverage and open access. Global Change Biology, 26(1), 119–188. 10.1111/gcb.14904 PubMed DOI
Kattge, J. , Díaz, S. , Lavorel, S. , Prentice, I. C. , Leadley, P. , Bönisch, G. , Garnier, E. , Westoby, M. , Reich, P. B. , Wright, I. J. , Cornelissen, J. H. C. , Violle, C. , Harrison, S. P. , Van BODEGOM, P. M. , Reichstein, M. , Enquist, B. J. , Soudzilovskaia, N. A. , Ackerly, D. D. , Anand, M. , … Wirth, C. (2011). TRY – a global database of plant traits. Global Change Biology, 17(9), 2905–2935. 10.1111/j.1365-2486.2011.02451.x DOI
Keane, R. E. , Austin, M. , Field, C. , Huth, A. , Lexer, M. J. , Peters, D. , & Wyckoff, P. (2001). Tree mortality in gap models: Application to climate change. Climatic Change, 51(3–4), 509–540. 10.1023/A:1012539409854 DOI
Kearney, M. , & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334–350. 10.1111/j.1461-0248.2008.01277.x PubMed DOI
Keenan, T. , Niinemets, Ü. , Sabate, S. , Gracia, C. , & Peñuelas, J. (2009a). Process based inventory of isoprenoid emissions from European forests: Model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 9(12), 4053–4076. 10.5194/acp-9-4053-2009 DOI
Keenan, T. , Niinemets, Ü. , Sabate, S. , Gracia, C. , & Peñuelas, J. (2009b). Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: Implications for regional VOC emissions modeling. Journal of Geophysical Research: Atmospheres, 114(D22202), 10.1029/2009JD011904 DOI
Keenan, T. , Sabaté, S. , & Gracia, C. (2008). Forest eco‐physiological models and carbon sequestration. In: Bravo F., Jandl R., LeMay V., & von Gadow K. (Eds.) Managing Forest Ecosystems: The Challenge of Climate Change (pp. 83–102). : Springer. 10.1007/978-1-4020-8343-3_5 DOI
Keenan, T. , Serra, J. M. , Lloret, F. , Ninyerola, M. , & Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche‐ and process‐based models: CO2 matters!. Global Change Biology, 17(1), 565–579. 10.1111/j.1365-2486.2010.02254.x DOI
Kercher, J. R. , & Axelrod, M. C. (1984). Analysis of silva: A model for forecasting the effects of SO2 pollution and fire on western coniferous forests. Ecological Modelling, 23(1), 165–184. 10.1016/0304-3800(84)90124-8 DOI
Kienast, F. (1987). FORECE: A forest succession model for southern Central Europe (No. ORNL/TM‐10575). Oak Ridge National Lab., TN (USA) website: https://www.osti.gov/biblio/5729437
Kleidon, A. , & Mooney, H. A. (2000). A global distribution of biodiversity inferred from climatic constraints: Results from a process‐based modelling study. Global Change Biology, 6(5), 507–523. 10.1046/j.1365-2486.2000.00332.x DOI
Knapp, N. , Fischer, R. , & Huth, A. (2018). Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment, 205, 199–209. 10.1016/j.rse.2017.11.018 DOI
Köhler, P. , & Huth, A. (1998). The effects of tree species grouping in tropical rainforest modelling: Simulations with the individual‐based model Formind. Ecological Modelling, 109(3), 301–321. 10.1016/S0304-3800(98)00066-0 DOI
Kramer, K. , Leinonen, I. , Bartelink, H. H. , Berbigier, P. , Borghetti, M. , Bernhofer, C. , & Vesala, T. (2002). Evaluation of six process‐based forest growth models using eddy‐covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8(3), 213–230. doi: 10.1046/j.1365‐2486.2002.00471.x (2002). Evaluation of six process‐based forest growth models using eddy‐covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8, 213–230.
Krinner, G. , Viovy, N. , de Noblet‐Ducoudré, N. , Ogée, J. , Polcher, J. , Friedlingstein, P. , Ciais, P. , Sitch, S. , & Prentice, I. C. (2005). A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles, 19(1), GB1015. 10.1029/2003GB002199 DOI
Kunstler, G. , Allen, R. B. , Coomes, D. A. , Canham, C. D. , & Wright, E. F. (2013). Sustainable management, earthquake disturbances, and transient dynamics: Modelling timber harvesting impacts in mixed‐species forests. Annals of Forest Science, 70(3), 287–298. 10.1007/s13595-012-0256-6 DOI
Kunstler, G. , Coomes, D. A. , & Canham, C. D. (2009). Size‐dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology, 97(4), 685–695. 10.1111/j.1365-2745.2009.01482.x DOI
Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Penguin Books.
Lafond, V. , Lagarrigues, G. , Cordonnier, T. , & Courbaud, B. (2014). Uneven‐aged management options to promote forest resilience for climate change adaptation: Effects of group selection and harvesting intensity. Annals of Forest Science, 71(2), 173–186. 10.1007/s13595-013-0291-y DOI
Langan, L. , Higgins, S. I. , & Scheiter, S. (2017). Climate‐biomes, pedo‐biomes or pyro‐biomes: Which world view explains the tropical forest–savanna boundary in South America? Journal of Biogeography, 44(10), 2319–2330. 10.1111/jbi.13018 DOI
Langerwisch, F. , Václavík, T. , von Bloh, W. , Vetter, T. , & Thonicke, K. (2017). Combined effects of climate and land‐use change on the provision of ecosystem services in rice agro‐ecosystems. Environmental Research Letters, 13(1), 15003. 10.1088/1748-9326/aa954d DOI
Lasslop, G. , Thonicke, K. , & Kloster, S. (2014). SPITFIRE within the MPI Earth system model: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 6(3), 740–755. 10.1002/2013MS000284 DOI
Leathwick, J. R. , & Austin, M. P. (2001). Competitive interactions between tree species in New Zealand’s old‐growth indigenous forests. Ecology, 82(9), 2560–2573. 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2 DOI
LeBauer, D. S. , Wang, D. , Richter, K. T. , Davidson, C. C. , & Dietze, M. C. (2013). Facilitating feedbacks between field measurements and ecosystem models. Ecological Monographs, 83(2), 133–154. 10.1890/12-0137.1 DOI
Leemans, R. , & Prentice, I. C. (1989). FORSKA ‐ a general forest succession model. Meddelanden Fraan Vaextbiologiska Institutionen: Retrieved from. http://agris.fao.org/agris‐search/search.do?recordID=SE19890116521
Lehmann, S. , & Huth, A. (2015). Fast calibration of a dynamic vegetation model with minimum observation data. Ecological Modelling, 301, 98–105. 10.1016/j.ecolmodel.2015.01.013 DOI
Lehsten, V. , Mischurow, M. , Lindström, E. , Lehsten, D. , & Lischke, H. (2019). LPJ‐GM 1.0: Simulating migration efficiently in a dynamic vegetation model. Geoscientific Model Development, 12(3), 893–908. 10.5194/gmd-12-893-2019 DOI
Lenihan, J. M. , Daly, C. , Bachelet, D. , & Neilson, R. P. (1998). Simulating broad‐scale fire severity in a Dynamic Global Vegetation Model. Northwest Science, 72, 91–103.
Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 73(6), 1943–1967. 10.2307/1941447 DOI
Lischke, H. (2005). Modeling tree species migration in the Alps during the Holocene: What creates complexity? Ecological Complexity, 2(2), 159–174. 10.1016/j.ecocom.2004.11.009 DOI
Lischke, H. , & Löffler, T. J. (2006). Intra‐specific density dependence is required to maintain species diversity in spatio‐temporal forest simulations with reproduction. Ecological Modelling, 198(3–4), 341–361. 10.1016/j.ecolmodel.2006.05.005 DOI
Lischke, H. , von Grafenstein, U. , & Ammann, B. (2013). Forest dynamics during the transition from the Oldest Dryas to the Bølling‐Allerød at Gerzensee—A simulation study. Palaeogeography, Palaeoclimatology, Palaeoecology, 391, 60–73. 10.1016/j.palaeo.2012.12.001 DOI
Lischke, H. , Zimmermann, N. E. , Bolliger, J. , Rickebusch, S. , & Löffler, T. J. (2006). TreeMig: A forest‐landscape model for simulating spatio‐temporal patterns from stand to landscape scale. Ecological Modelling, 199(4), 409–420. 10.1016/j.ecolmodel.2005.11.046 DOI
Liu, J. , & Ashton, P. S. (1995). Individual‐based simulation models for forest succession and management. Forest Ecology and Management, 73(1), 157–175. 10.1016/0378-1127(94)03490-N DOI
Loreau, M. , Naeem, S. , Inchausti, P. , Bengtsson, J. , Grime, J. P. , Hector, A. , & Wardle, D. A. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804–808. 10.1126/science.1064088 PubMed DOI
Lovenduski, N. S. , & Bonan, G. B. (2017). Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters, 12(4), 44020. 10.1088/1748-1412-9326/aa66b8 DOI
MacArthur, R. , & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377–385. 10.1086/282505 DOI
Makela, A. , Landsberg, J. , Ek, A. R. , Burk, T. E. , Ter‐Mikaelian, M. , Agren, G. I. , Oliver, C. D. , & Puttonen, P. (2000). Process‐based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiology, 20(5–6), 289–298. 10.1093/treephys/20.5-6.289 PubMed DOI
Malhi, Y. , Doughty, C. E. , Goldsmith, G. R. , Metcalfe, D. B. , Girardin, C. A. J. , Marthews, T. R. , del Aguila‐Pasquel, J. , Aragão, L. E. O. C. , Araujo‐Murakami, A. , Brando, P. , da Costa, A. C. L. , Silva‐Espejo, J. E. , Farfán Amézquita, F. , Galbraith, D. R. , Quesada, C. A. , Rocha, W. , Salinas‐Revilla, N. , Silvério, D. , Meir, P. , & Phillips, O. L. (2015). The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 21(6), 2283–2295. 10.1111/gcb.12859 PubMed DOI
Maréchaux, I. , & Chave, J. (2017). An individual‐based forest model to jointly simulate carbon and tree diversity in Amazonia: Description and applications. Ecological Monographs, 87(4), 632–664. 10.1002/ecm.1271 DOI
Maris, V. , Huneman, P. , Coreau, A. , Kéfi, S. , Pradel, R. , & Devictor, V. (2018). Prediction in ecology: Promises, obstacles and clarifications. Oikos, 127(2), 171–183. 10.1111/oik.04655 DOI
Maroschek, M. , Rammer, W. , & Lexer, M. J. (2015). Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Regional Environmental Change, 15(8), 1543–1555. 10.1007/s10113-014-0691-z DOI
McGill, B. J. , Enquist, B. J. , Weiher, E. , & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. 10.1016/j.tree.2006.02.002 PubMed DOI
McMahon, S. M. , Harrison, S. P. , Armbruster, W. S. , Bartlein, P. J. , Beale, C. M. , Edwards, M. E. , Kattge, J. , Midgley, G. , Morin, X. , & Prentice, I. C. (2011). Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology & Evolution, 26(5), 249–259. 10.1016/j.tree.2011.02.012 PubMed DOI
Medlyn, B. E. , De Kauwe, M. G. , Zaehle, S. , Walker, A. P. , Duursma, R. A. , Luus, K. Mishurov, M. , Pak, B. , Smith, B. , Wang, Y.‐P. , Yang, X. , Crous, K. Y. , Drake, J. E. , Gimeno, T. E. , Macdonald, C. A. , Norby, R. J. , Power, S. A. , Tjoelker, M. G. , & Ellsworth, D. S. (2016). Using models to guide field experiments: A priori predictions for the CO2 response of a nutrient‐ and water‐limited native Eucalypt woodland. Global Change Biology, 22(8), 2834–2851. 10.1111/gcb.13268 PubMed DOI
Medlyn, B. E. , Duursma, R. A. , & Zeppel, M. J. B. (2011). Forest productivity under climate change: A checklist for evaluating model studies. Wires Clim Change, 2(3), 332–355. 10.1002/wcc.108 DOI
Medlyn, B. E. , Pepper, D. A. , O’Grady, A. P. , & Keith, H. (2007). Linking leaf and tree water use with an individual‐tree model. Tree Physiology, 27(12), 1687–1699. 10.1093/treephys/27.12.1687 PubMed DOI
Medvigy, D. , Wang, G. , Zhu, Q. , Riley, W. J. , Trierweiler, A. M. , Waring, B. G. , Xu, X. , & Powers, J. S. (2019). Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 223(4), 1820–1833. 10.1111/nph.15848 PubMed DOI
Meier, E. S. , Edwards Jr, T. C. , Kienast, F. , Dobbertin, M. , & Zimmermann, N. E. (2011). Co‐occurrence patterns of trees along macro‐climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. Journal of Biogeography, 38(2), 371–382. 10.1111/j.1365-2699.2010.02405.x DOI
Meir, P. , Wood, T. E. , Galbraith, D. R. , Brando, P. M. , Costa, A. C. L. D. , Rowland, L. , & Ferreira, L. V. (2015). Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: Insights from field experiments. BioScience, 65(9), 882–892. 10.1093/biosci/biv107 PubMed DOI PMC
Merganičová, K. , Merganič, J. , Lehtonen, A. , Vacchiano, G. , Sever, M. Z. O. , Augustynczik, A. L. D. , Grote, R. , Kyselová, I. , Mäkelä, A. , Yousefpour, R. , Krejza, J. , Collalti, A. , & Reyer, C. P. O. (2019). Forest carbon allocation modelling under climate change. Tree Physiology, 39(12), 1937–1960. 10.1093/treephys/tpz105 PubMed DOI PMC
Millennium Ecosystem Assessment . (2005). Ecosystems and Human Well‐being: Biodiversity Synthesis. World Resources Institute, Washington, DC.
Mina, M. , Bugmann, H. , Cordonnier, T. , Irauschek, F. , Klopcic, M. , Pardos, M. , & Cailleret, M. (2017). Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 54(2), 389–401. 10.1111/1365-2664.12772 DOI
Mohren, G. M. J. , Kramer K., & Sabaté S. (Eds.) (1997). Impacts of Global Change on Tree Physiology and Forest Ecosystems: Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen, The Netherlands. Kluwer Academic Publishers.
Moorcroft, P. R. , Hurtt, G. C. , & Pacala, S. W. (2001). A method for scaling vegetation dynamics: the ecosystem demography model (ed). Ecological Monographs, 71(4), 1478 557–586. 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2 DOI
Morales, P. , Sykes, M. T. , Prentice, I. C. , Smith, P. , Smith, B. , Bugmann, H. , & Ogee, J. (2005). Comparing and evaluating process‐based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11(12), 2211–2233. 10.1111/j.1365-2486.2005.01036.x PubMed DOI
Mori, A. S. (2017). Biodiversity and ecosystem services in forests: Management and restoration founded on ecological theory. Journal of Applied Ecology, 54(1), 7–11. 10.1111/1365-2664.12854 DOI
Morin, X. , Bugmann, H. , Coligny, F. , Martin‐StPaul, N. , Cailleret, M. , Limousin, J.‐M. , Ourcival, J.‐M. , Prevosto, B. , Simioni, G. , Toigo, M. , Vennetier, M. , Catteau, E. , & Guillemot, J. (2021). Beyond forest succession: A gap model to study ecosystem functioning and tree community composition under climate change. Functional Ecology, 10.1111/1365-2435.13760 DOI
Morin, X. , Damestoy, T. , Toigo, M. , Castagneyrol, B. , Jactel, H. , de Coligny, F. , & Meredieu, C. (2020). Using forest gap models and experimental data to explore long‐term effects of tree diversity on the productivity of mixed planted forests. Annals of Forest Science, 77(2), 50. 10.1007/s13595-020-00954-0 DOI
Morin, X. , Fahse, L. , de Mazancourt, C. , Scherer‐Lorenzen, M. , & Bugmann, H. (2014). Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 17(12), 1526–1535. 10.1111/ele.12357 PubMed DOI
Morin, X. , Fahse, L. , Jactel, H. , Scherer‐Lorenzen, M. , García‐Valdés, R. , & Bugmann, H. (2018). Long‐term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 8(1), 5627. 10.1038/s41598-018-23763-y PubMed DOI PMC
Morin, X. , Fahse, L. , Scherer‐Lorenzen, M. , & Bugmann, H. (2011). Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14(12), 1211–1219. 10.1111/j.1461-0248.2011.01691.x PubMed DOI
Morin, X. , & Lechowicz, M. J. (2008). Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters, 4(5), 573–576. 10.1098/rsbl.2008.0181 PubMed DOI PMC
Morin, X. , & Thuiller, W. (2009). Comparing niche‐and process‐based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90(5), 1301–1313. 10.1890/08-0134.1 PubMed DOI
Mouquet, N. , Lagadeuc, Y. , Devictor, V. , Doyen, L. , Duputié, A. , Eveillard, D. , Faure, D. , Garnier, E. , Gimenez, O. , Huneman, P. , Jabot, F. , Jarne, P. , Joly, D. , Julliard, R. , Kéfi, S. , Kergoat, G. J. , Lavorel, S. , Le Gall, L. , Meslin, L. , … Loreau, M. (2015). REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 52(5), 1293–1310. 10.1111/1365-2664.12482 DOI
Muller‐Landau, H. C. , Wright, S. J. , Calderón, O. , Condit, R. , & Hubbell, S. P. (2008). Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology, 96(4), 653–667. 10.1111/j.1365-2745.2008.01399.x DOI
Nabuurs, G.‐J. , Delacote, P. , Ellison, D. , Hanewinkel, M. , Hetemäki, L. , & Lindner, M. (2017). By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests, 8(12), 484. 10.3390/f8120484 DOI
Naeem, S. , Bunker, D. E. , Hector, A. , Loreau, M. , & Perrings, C. (2009). Biodiversity, ecosystem functioning, and human wellbeing: An ecological and economic perspective. Oxford University Press.
Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology & Evolution, 16(4), 205–210. 10.1016/S0169-5347(01)02117-6 PubMed DOI
Neilson, R. P. , Pitelka, L. F. , Solomon, A. M. , Nathan, R. , Midgley, G. F. , Fragoso, J. M. V. , & Thompson, K. (2005). Forecasting regional to global plant migration in response to climate change. BioScience, 55(9), 749–759. 10.1641/0006-3568(2005)055[0749:FRTGPM]2.0.CO;2 DOI
Nobis, M. P. , & Normand, S. (2014). KISSMig – a simple model for R to account for limited migration in analyses of species distributions. Ecography, 37(12), 1282–1287. 10.1111/ecog.00930 DOI
Noce, S. , Collalti, A. , & Santini, M. (2017). Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecology and Evolution, 7(22), 9358–9375. 10.1002/ece3.3427 PubMed DOI PMC
Norby, R. J. , De Kauwe, M. G. , Domingues, T. F. , Duursma, R. A. , Ellsworth, D. S. , Goll, D. S. , & Zaehle, S. (2016). Model–data synthesis for the next generation of forest free‐air CO2 enrichment (FACE) experiments. New Phytologist, 209(1), 17–28. 10.1111/nph.13593 PubMed DOI
Overpeck, J. T. , Rind, D. , & Goldberg, R. (1990). Climate‐induced changes in forest disturbance and vegetation. Nature, 343(6253), 51–53. 10.1038/343051a0 DOI
Pacala, S. W. , Canham, C. D. , Saponara, J. , Silander, J. A. , Kobe, R. K. , & Ribbens, E. (1996). Forest models defined by field measurements: Estimation, error analysis and dynamics. Ecological Monographs, 66(1), 1–43. 10.2307/2963479 DOI
Pachzelt, A. , Rammig, A. , Higgins, S. , & Hickler, T. (2013). Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecological Modelling, 263, 92–102. 10.1016/j.ecolmodel.2013.04.025 DOI
Pan, Y. , Birdsey, R. A. , Fang, J. , Houghton, R. , Kauppi, P. E. , Kurz, W. A. , Phillips, O. L. , Shvidenko, A. , Lewis, S. L. , Canadell, J. G. , Ciais, P. , Jackson, R. B. , Pacala, S. W. , McGuire, A. D. , Piao, S. , Rautiainen, A. , Sitch, S. , & Hayes, D. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988–993. 10.1126/science.1201609 PubMed DOI
Park, J. Y. , Muller‐Landau, H. C. , Lichstein, J. W. , Rifai, S. W. , Dandois, J. P. , & Bohlman, S. A. (2019). Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sensing, 11(13), 1534. 10.3390/rs11131534 DOI
Pastor, J. , & Post, W. M. (1986). Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry, 2(1), 3–27. 10.1007/BF02186962 DOI
Pastor, J. , & Post, W. M. (1988). Response of northern forests to CO2 ‐induced climate change. Nature, 334(6177), 55–58. 10.1038/334055a0 DOI
Pastorello, G. , Trotta, C. , Canfora, E. , Chu, H. , Christianson, D. , Cheah, Y.‐W. , Poindexter, C. , Chen, J. , Elbashandy, A. , Humphrey, M. , Isaac, P. , Polidori, D. , Reichstein, M. , Ribeca, A. , van Ingen, C. , Vuichard, N. , Zhang, L. , Amiro, B. , Ammann, C. , … Papale, D. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. 10.1038/s41597-020-0534-3 PubMed DOI PMC
Pausas, J. G. (1999). Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach. Journal of Vegetation Science, 10(5), 717–722. 10.2307/3237086 DOI
Pavlick, R. , Drewry, D. T. , Bohn, K. , Reu, B. , & Kleidon, A. (2013). The Jena Diversity‐Dynamic Global Vegetation Model (JeDi‐DGVM): A diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade‐offs. Biogeosciences, 10(6), 4137–4177. 10.5194/bg-10-4137-2013 DOI
Pérez‐Méndez, N. , Jordano, P. , García, C. , & Valido, A. (2016). The signatures of Anthropocene defaunation: Cascading effects of the seed dispersal collapse. Scientific Reports, 6, 24820. 10.1038/srep24820 PubMed DOI PMC
Petter, G. , Mairota, P. , Albrich, K. , Bebi, P. , Bruna, J. , Bugmann, H. , Haffenden, A. , Scheller, R. M. , Schmatz, D. R. , Seidl, R. , Speich, M. , Vacchiano, G. , & Lischke, H. (2020). How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models. Environmental Modelling & Software, 134.104844. 10.1016/j.envsoft.2020.104844 DOI
Ploton, P. , Mortier, F. , Barbier, N. , Cornu, G. , Réjou‐Méchain, M. , Rossi, V. , Alonso, A. , Bastin, J.‐F. , Bayol, N. , Bénédet, F. , Bissiengou, P. , Chuyong, G. , Demarquez, B. , Doucet, J.‐L. , Droissart, V. , Kamdem, N. G. , Kenfack, D. , Memiaghe, H. , Moses, L. , … Gourlet‐Fleury, S. (2020). A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data, 7(1), 221. 10.1038/s41597-020-0561-0 PubMed DOI PMC
Ploton, P. , Mortier, F. , Réjou‐Méchain, M. , Barbier, N. , Picard, N. , Rossi, V. , Dormann, C. , Cornu, G. , Viennois, G. , Bayol, N. , Lyapustin, A. , Gourlet‐Fleury, S. , & Pélissier, R. (2020). Spatial validation reveals poor predictive performance of large‐scale ecological mapping models. Nature Communications, 11(1), 4540. 10.1038/s41467-020-18321-y PubMed DOI PMC
Porté, A. , & Bartelink, H. H. (2002). Modelling mixed forest growth: A review of models for forest management. Ecological Modelling, 150(1–2), 141–188. 10.1016/S0304-3800(01)00476-8 DOI
Porcia e Brugnera, M. , Meunier, F. , Longo, M. , Krishna Moorthy, S. M. , De Deurwaerder, H. , Schnitzer, S. A. , Bonal, D. , Faybishenko, B. , & Verbeeck, H. (2019). Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global Change Biology, 25, 3767–3780. 10.1111/gcb.14769 PubMed DOI PMC
Poyatos, R. , Granda, V. , Molowny‐Horas, R. , Mencuccini, M. , Steppe, K. , & Martínez‐Vilalta, J. (2016). SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiology, 36(12), 1449–1455. 10.1093/treephys/tpw110 PubMed DOI
Prentice, I. C. , Bondeau, A. , Cramer, W. , Harrison, S. P. , Hickler, T. , Lucht, W. , & Sykes, M. , (2007). Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to Large‐Scale environmental change. In Canadell J. G., Pataki D. E., & Pitelka L. F. (Eds.), Terrestrial Ecosystems in a Changing World (pp. 175–192). : Springer Science & Business Media. Retrieved from http://link.springer.com/chapter/10.1007/978‐3‐540‐32730‐1_15 DOI
Prentice, I. C. , Liang, X. , Medlyn, B. E. , & Wang, Y.‐P. (2015). Reliable, robust and realistic: The three R’s of next‐generation land‐surface modelling. Atmospheric Chemistry and Physics, 15(10), 5987–6005. 10.5194/acp-15-5987-2015 DOI
Pretzsch, H. , Biber, P. , & Ďurský, J. (2002). The single tree‐based stand simulator SILVA: Construction, application and evaluation. Forest Ecology and Management, National and Regional Climate Change Impact Assessments in the Forestry Sector, 62(1), 3–21. 10.1016/S0378-1127(02)00047-6 DOI
Pretzsch, H. , Grote, R. , Reineking, B. , Rötzer, T. , & Seifert, S. (2008). Models for forest ecosystem management: A European perspective. Annals of Botany, 62(1), 3–21. 10.1016/S0378-1127(02)00047-6 PubMed DOI PMC
Pütz, S. , Groeneveld, J. , Alves, L. F. , Metzger, J. P. , & Huth, A. (2011). Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests. Ecological Modelling, 222(12), 1986–1997. 10.1016/j.ecolmodel.2011.03.038 DOI
Pütz, S. , Groeneveld, J. , Henle, K. , Knogge, C. , Martensen, A. C. , Metz, M. , Metzger, J. P. , Ribeiro, M. C. , de Paula, M. D. , & Huth, A. (2014). Long‐term carbon loss in fragmented Neotropical forests. Nature Communications, 5, 5037. 10.1038/ncomms6037 PubMed DOI
Quillet, A. , Peng, C. , & Garneau, M. (2010). Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environmental Reviews, 18(NA), 333–353. 10.1139/A10-016 DOI
Radchuk, V. , Laender, F. D. , Cabral, J. S. , Boulangeat, I. , Crawford, M. , Bohn, F. , Raedt, J. D. , Scherer, C. , Svenning, J.‐C. , Thonicke, K. , Schurr, F. M. , Grimm, V. , & Kramer‐Schadt, S. (2019). The dimensionality of stability depends on disturbance type. Ecology Letters, 22(4), 674–684. 10.1111/ele.13226 PubMed DOI
Raiho, A. , Dietze, M. , Dawson, A. , Rollinson, C. R. , Tipton, J. , & McLachlan, J. (2020). Towards understanding predictability in ecology: A forest gap model case study. BioRxiv, 2020.05.05.079871. 10.1101/2020.05.05.079871 DOI
Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7. 10.1186/1751-0473-8-7 PubMed DOI PMC
Ramage, M. H. , Burridge, H. , Busse‐Wicher, M. , Fereday, G. , Reynolds, T. , Shah, D. U. , Wu, G. , Yu, L. I. , Fleming, P. , Densley‐Tingley, D. , Allwood, J. , Dupree, P. , Linden, P. F. , & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359. 10.1016/j.rser.2016.09.107 DOI
Rammer, W. , & Seidl, R. (2019). A scalable model of vegetation transitions using deep neural networks. Methods in Ecology and Evolution, 10(6), 879–890. 10.1111/2041-210X.13171 PubMed DOI PMC
Rasche, L. , Fahse, L. , Zingg, A. , & Bugmann, H. (2011). Getting a virtual forester fit for the challenge of climatic change. Journal of Applied Ecology, 48(5), 1174–1186. 10.1111/j.1365-2664.2011.02014.x DOI
Reed, S. C. , Yang, X. , & Thornton, P. E. (2015). Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytologist, 208(2), 324–329. 10.1111/nph.13521 PubMed DOI
Reichstein, M. , Bahn, M. , Ciais, P. , Frank, D. , Mahecha, M. D. , Seneviratne, S. I. , Zscheischler, J. , Beer, C. , Buchmann, N. , Frank, D. C. , Papale, D. , Rammig, A. , Smith, P. , Thonicke, K. , van der Velde, M. , Vicca, S. , Walz, A. , & Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287–295. 10.1038/nature12350 PubMed DOI
Reichstein, M. , Camps‐Valls, G. , Stevens, B. , Jung, M. , Denzler, J. , Carvalhais, N. , & Prabhat, Xxx. (2019). Deep learning and process understanding for data‐driven Earth system science. Nature, 566(7743), 195. 10.1038/s41586-019-0912-1 PubMed DOI
Réjou‐Méchain, M. , Barbier, N. , Couteron, P. , Ploton, P. , Vincent, G. , Herold, M. , Mermoz, S. , Saatchi, S. , Chave, J. , de Boissieu, F. , Féret, J.‐B. , Takoudjou, S. M. , & Pélissier, R. (2019). Upscaling forest biomass from field to satellite measurements: Sources of errors and ways to reduce them. Surveys in Geophysics, 40(4), 881–911. 10.1007/s10712-019-09532-0 DOI
Reyer, C. (2015). Forest Productivity under environmental change—a Review of Stand‐Scale modeling studies. Current Forestry Report, 1(2), 53–68. 10.1007/s40725-1632-015-0009-5 DOI
Reyer, C. P. O. , Bugmann, H. , Nabuurs, G.‐J. , & Hanewinkel, M. (2015). Models for adaptive forest management. Regional Environmental Change, 15(8), 1483–1487. 10.1007/s10113-015-0861-7 DOI
Reyer, C. P. O. , Silveyra Gonzalez, R. , Dolos, K. , Hartig, F. , Hauf, Y. , Noack, M. , Lasch‐Born, P. , Rötzer, T. , Pretzsch, H. , Meesenburg, H. , Fleck, S. , Wagner, M. , Bolte, A. , Sanders, T. G. M. , Kolari, P. , Mäkelä, A. , Vesala, T. , Mammarella, I. , Pumpanen, J. , … Frieler, K. (2020). The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 12(2), 1295–1320. 10.5194/essd-12-1295-2020 DOI
Richter, S. , Kipfer, T. , Wohlgemuth, T. , Calderón Guerrero, C. , Ghazoul, J. , & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169(1), 269–279. 10.1007/s00442-011-2191-x PubMed DOI
Rödig, E. , Cuntz, M. , Heinke, J. , Rammig, A. , & Huth, A. (2017). Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 26(11), 1292–1302. 10.1111/geb.12639 DOI
Rödig, E. , Cuntz, M. , Rammig, A. , Fischer, R. , Taubert, F. , & Huth, A. (2018). The importance of forest structure for carbon fluxes of the Amazon rainforest. Environmental Research Letters, 13(5), 54013. 10.1088/1748-9326/aabc61 DOI
Rogers, A. , Medlyn, B. E. , Dukes, J. S. , Bonan, G. , von Caemmerer, S. , Dietze, M. C. , Kattge, J. , Leakey, A. D. B. , Mercado, L. M. , Niinemets, Ü. , Prentice, I. C. , Serbin, S. P. , Sitch, S. , Way, D. A. , & Zaehle, S. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213(1), 22–42. 10.1111/nph.14283 PubMed DOI
Rogers, B. M. , Soja, A. J. , Goulden, M. L. , & Randerson, J. T. (2015). Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8(3), 228–234. 10.1038/ngeo2352 DOI
Rolinski, S. , Müller, C. , Heinke, J. , Weindl, I. , Biewald, A. , Bodirsky, B. L. , Bondeau, A. , Boons‐Prins, E. R. , Bouwman, A. F. , Leffelaar, P. A. , te Roller, J. A. , Schaphoff, S. , & Thonicke, K. (2018). Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 11(1), 429–451. 10.5194/gmd-11-429-2018 DOI
Roşca, S. , Suomalainen, J. , Bartholomeus, H. , & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface Focus, 8(2), 20170038. 10.1098/rsfs.2017.0038 PubMed DOI PMC
Rüger, N. , Condit, R. , Dent, D. H. , DeWalt, S. J. , Hubbell, S. P. , Lichstein, J. W. , & Farrior, C. E. (2019). Demographic tradeoffs predict tropical forest dynamics. BioRxiv, 808865. 10.1101/808865 PubMed DOI
Running, S. W. , Nemani, R. R. , Heinsch, F. A. , Zhao, M. , Reeves, M. , & Hashimoto, H. (2004). A continuous satellite‐derived measure of global terrestrial primary production. BioScience, 54(6), 547–560. 10.1641/0006-1666-3568(2004)054[0547:ACSMOG]2.0.CO;2 DOI
Rykiel, E. J. Jr (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90(3), 229–244. 10.1016/0304-3800(95)00152-2 DOI
Saatchi, S. S. , Harris, N. L. , Brown, S. , Lefsky, M. , Mitchard, E. T. A. , Salas, W. , Zutta, B. R. , Buermann, W. , Lewis, S. L. , Hagen, S. , Petrova, S. , White, L. , Silman, M. , & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. 10.1073/pnas.1019576108 PubMed DOI PMC
Sabaté, S. , Gracia, C. A. , & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, National and Regional Climate Change Impact Assessments in the Forestry Sector, 162(1), 23–37. 10.1016/S0378-1127(02)00048-8 DOI
Sakschewski, B. , von Bloh, W. , Boit, A. , Poorter, L. , Peña‐Claros, M. , Heinke, J. , & Thonicke, K. (2016). Resilience of Amazon forests emerges from plant trait diversity. Nature Climate Change, 6(11), 1032–1036. 10.1038/nclimate3109 DOI
Sakschewski, B. , von Bloh, W. , Boit, A. , Rammig, A. , Kattge, J. , Poorter, L. , Peñuelas, J. , & Thonicke, K. (2015). Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 21(7), 2711–2725. 10.1111/gcb.12870 PubMed DOI
Saltelli, A. (2019). A short comment on statistical versus mathematical modelling. Nature Communications, 10(1), 3870. 10.1038/s41467-019-11865-8 PubMed DOI PMC
Sato, H. , Itoh, A. , & Kohyama, T. (2007). SEIB‐DGVM: A new dynamic global vegetation model using a spatially explicit individual‐based approach. Ecological Modelling, 200(3–4), 279–307. 10.1016/j.ecolmodel.2006.09.006 DOI
Savage, M. , Sawhill, B. , & Askenazi, M. (2000). Community dynamics: What happens when we rerun the tape? Journal of Theoretical Biology, 205(4), 515–526. 10.1006/jtbi.2000.2055 PubMed DOI
Schaphoff, S. , von Bloh, W. , Rammig, A. , Thonicke, K. , Biemans, H. , Forkel, M. , & Waha, K. (2018). LPJmL4 – A dynamic global vegetation model with managed land – Part 1: Model description. Geoscientific Model Development, 11(4), 1343–1375. 10.5194/gmd-11-1343-2018 DOI
Scheiter, S. , Langan, L. , & Higgins, S. I. (2013). Next‐generation dynamic global vegetation models: Learning from community ecology. New Phytologist, 198(3), 957–969. 10.1111/nph.12210 PubMed DOI
Scherer‐Lorenzen, M. (2014). The functional role of biodiversity in the context of global change. In Coomes D. A., Burslem D. F. R. P., & Simonson W. D. (Eds.), Forests and Global Change (pp. 195–238). : Cambridge University Press.
Scherstjanoi, M. , Kaplan, J. O. , Poulter, B. , & Lischke, H. (2014). Challenges in developing a computationally efficient plant physiological height‐class‐structured forest model. Ecological Complexity, 19, 96–110. 10.1016/j.ecocom.2014.05.009 DOI
Schmid, J. S. , Huth, A. , & Taubert, F. (2021). Influences of traits and processes on productivity and functional composition in grasslands: A modeling study. Ecological Modelling, 440, 109395. 10.1016/j.ecolmodel.2020.109395 DOI
Schmitt, S. , Maréchaux, I. , Chave, J. , Fischer, F. J. , Piponiot, C. , Traissac, S. , & Hérault, B. (2020). Functional diversity improves tropical forest resilience: Insights from a long‐term virtual experiment. Journal of Ecology, 108(3), 831–843. 10.1111/1365-2745.13320 DOI
Schnitzer, S. A. , & Carson, W. P. (2016). Would ecology fail the repeatability test? BioScience, 66(2), 98–99. 10.1093/biosci/biv176 DOI
Schwörer, C. , Henne, P. D. , & Tinner, W. (2014). A model‐data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Global Change Biology, 20(5), 1512–1526. 10.1111/gcb.12456 PubMed DOI
Seagle, S. W. , & Liang, S.‐Y. (2001). Application of a forest gap model for prediction of browsing effects on riparian forest succession. Ecological Modelling, 144(2), 213–229. 10.1016/S0304-3800(01)00373-8 DOI
Seidl, R. , Albrich, K. , Thom, D. , & Rammer, W. (2018). Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 209, 46–56. 10.1016/j.jenvman.2017.12.014 PubMed DOI PMC
Seidl, R. , Fernandes, P. M. , Fonseca, T. F. , Gillet, F. , Jönsson, A. M. , Merganičová, K. , Netherer, S. , Arpaci, A. , Bontemps, J.‐D. , Bugmann, H. , González‐Olabarria, J. R. , Lasch, P. , Meredieu, C. , Moreira, F. , Schelhaas, M.‐J. , & Mohren, F. (2011). Modelling natural disturbances in forest ecosystems: A review. Ecological Modelling, 222(4), 903–924. 10.1016/j.ecolmodel.2010.09.040 DOI
Seidl, R. , Rammer, W. , & Blennow, K. (2014). Simulating wind disturbance impacts on forest landscapes: Tree‐level heterogeneity matters. Environmental Modelling & Software, 51, 1–11. 10.1016/j.envsoft.2013.09.018 DOI
Seidl, R. , Rammer, W. , Scheller, R. M. , & Spies, T. A. (2012). An individual‐based process model to simulate landscape‐scale forest ecosystem dynamics. Ecological Modelling, 231, 87–100. 10.1016/j.ecolmodel.2012.02.015 DOI
Seidl, R. , Schelhaas, M.‐J. , Rammer, W. , & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4(9), 806–810. 10.1038/nclimate2318 PubMed DOI PMC
Seidl, R. , Thom, D. , Kautz, M. , Martin‐Benito, D. , Peltoniemi, M. , Vacchiano, G. , Wild, J. , Ascoli, D. , Petr, M. , Honkaniemi, J. , Lexer, M. J. , Trotsiuk, V. , Mairota, P. , Svoboda, M. , Fabrika, M. , Nagel, T. A. , & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. 10.1038/nclimate3303 PubMed DOI PMC
Serra‐Diaz, J. M. , Keenan, T. F. , Ninyerola, M. , Sabaté, S. , Gracia, C. , & Lloret, F. (2013). Geographical patterns of congruence and incongruence between correlative species distribution models and a process‐based ecophysiological growth model. Journal of Biogeography, 40(10), 1928–1938. 10.1111/jbi.12142 DOI
Shifley, S. R. , He, H. S. , Lischke, H. , Wang, W. J. , Jin, W. , Gustafson, E. J. , & Yang, J. (2017). The past and future of modeling forest dynamics: From growth and yield curves to forest landscape models. Landscape Ecology, 32(7), 1307–1325. 10.1007/s10980-017-0540-9 DOI
Shugart, H. H. (1984). A theory of forest dynamics. Retrieved from, http://www.osti.gov/scitech/biblio/5642300
Shugart, H. H. , Asner, G. P. , Fischer, R. , Huth, A. , Knapp, N. , Le Toan, T. , & Shuman, J. K. (2015). Computer and remote‐sensing infrastructure to enhance large‐scale testing of individual‐based forest models. Frontiers in Ecology and the Environment, 13(9), 503–511. 10.1890/140327 DOI
Shugart, H. H. , & Noble, I. R. (1981). A computer model of succession and fire response of the high‐altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory. Australian Journal of Ecology, 6(2), 149–164. 10.1111/j.1442-9993.1981.tb01286.x DOI
Shugart, H. H. , Wang, B. , Fischer, R. , Ma, J. , Fang, J. , Yan, X. , Huth, A. , & Armstrong, A. H. (2018). Gap models and their individual‐based relatives in the assessment of the consequences of global change. Environmental Research Letters, 13(3), 33001. 10.1088/1748-9326/aaaacc DOI
Shugart, H. H. J. , & West, D. C. (1977). Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. Journal of Environmental Management, 5, 161–179.
Sitch, S. , Huntingford, C. , Gedney, N. , Levy, P. E. , Lomas, M. , Piao, S. L. , Betts, R. , Ciais, P. , Cox, P. , Friedlingstein, P. , Jones, C. D. , Prentice, I. C. , & Woodward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 2015–2039. 10.1111/j.1365-2486.2008.01626.x DOI
Sitch, S. , Smith, B. , Prentice, I. C. , Arneth, A. , Bondeau, A. , Cramer, W. , Kaplan, J. O. , Levis, S. , Lucht, W. , Sykes, M. T. , Thonicke, K. , & Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185. 10.1046/j.1365-2486.2003.00569.x DOI
Smith, B. , Prentice, I. C. , & Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10(6), 621–637. 10.1046/j.1466-822X.2001.t01-1-00256.x DOI
Smith, B. , Wårlind, D. , Arneth, A. , Hickler, T. , Leadley, P. , Siltberg, J. , & Zaehle, S. (2014). Implications of incorporating N cycling and N limitations on primary production in an individual‐based dynamic vegetation model. Biogeosciences, 11(7), 2027–2054. 10.5194/bg-11-2027-2014 DOI
Snell, R. S. (2014). Simulating long‐distance seed dispersal in a dynamic vegetation model. Global Ecology and Biogeography, 23(1), 89–98. 10.1111/geb.12106 DOI
Snell, R. S. , & Cowling, S. A. (2015). Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. Journal of Biogeography, 42(9), 1677–1688. 10.1111/jbi.1254 DOI
Snell, R. S. , Huth, A. , Nabel, J. E. M. S. , Bocedi, G. , Travis, J. M. J. , Gravel, D. , Bugmann, H. , Gutiérrez, A. G. , Hickler, T. , Higgins, S. I. , Reineking, B. , Scherstjanoi, M. , Zurbriggen, N. , & Lischke, H. (2014). Using dynamic vegetation models to simulate plant range shifts. Ecography, 37(12), 1184–1197. 10.1111/ecog.00580 DOI
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123. 10.1111/j.1461-0248.2007.01107.x PubMed DOI
Sofaer, H. R. , Jarnevich, C. S. , & Flather, C. H. (2018). Misleading prioritizations from modelling range shifts under climate change. Global Ecology and Biogeography, 27(6), 658–666. 10.1111/geb.12726 DOI
Solomon, A. M. (1986). Transient response of forests to CO2‐induced climate change: Simulation modeling experiments in eastern North America. Oecologia, 68(4), 567–579. 10.1007/BF00378773 PubMed DOI
Stephenson, N. L. (1990). Climatic control of vegetation distribution: The role of the water balance. The American Naturalist, 135(5), 649–670. 10.1086/285067 DOI
Sutherland, W. J. , Freckleton, R. P. , Godfray, H. C. J. , Beissinger, S. R. , Benton, T. , Cameron, D. D. , Carmel, Y. , Coomes, D. A. , Coulson, T. , Emmerson, M. C. , Hails, R. S. , Hays, G. C. , Hodgson, D. J. , Hutchings, M. J. , Johnson, D. , Jones, J. P. G. , Keeling, M. J. , Kokko, H. , Kunin, W. E. , … Wiegand, T. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology, 101(1), 58–67. 10.1111/1365-2745.12025 DOI
Svenning, J.‐C. , & Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 7(7), 565–573. 10.1111/j.1461-0248.2004.00614.x DOI
Takoudjou, S. M. , Ploton, P. , Sonké, B. , Hackenberg, J. , Griffon, S. , de Coligny, F. , & Barbier, N. (2018). Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods in Ecology and Evolution, 9(4), 905–916. 10.1111/2041-210X.12933 DOI
Taubert, F. , Hetzer, J. , Schmid, J. S. , & Huth, A. (2020). Confronting an individual‐based simulation model with empirical community patterns of grasslands. PLoS One, 15(7), e0236546. 10.1371/journal.pone.0236546 PubMed DOI PMC
Thom, D. , Rammer, W. , Dirnböck, T. , Müller, J. , Kobler, J. , Katzensteiner, K. , Helm, N. , & Seidl, R. (2017). The impacts of climate change and disturbance on spatio‐temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 54(1), 28–38. 10.1111/1365-2664.12644 PubMed DOI PMC
Thonicke, K. , Venevsky, S. , Sitch, S. , & Cramer, W. (2001). The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10(6), 661–677. 10.1046/j.1466-822X.2001.00175.x DOI
Thuiller, W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353–1362. 10.1046/j.1365-2486.2003.00666.x PubMed DOI PMC
Thuiller, W. (2004). Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10(12), 2020–2027. 10.1111/j.1365-2486.2004.00859.x PubMed DOI PMC
Thuiller, W. , Albert, C. , Araújo, M. B. , Berry, P. M. , Cabeza, M. , Guisan, A. , Hickler, T. , Midgley, G. F. , Paterson, J. , Schurr, F. M. , Sykes, M. T. , & Zimmermann, N. E. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9(3–4), 137–152. 10.1016/j.ppees.2007.09.004 DOI
Thuiller, W. , Richardson, D. M. , Pyšek, P. , Midgley, G. F. , Hughes, G. O. , & Rouget, M. (2005). Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12), 2234–2250. 10.1111/j.1365-2486.2005.001018.x PubMed DOI
Thuiller, W. , Vayreda, J. , Pino, J. , Sabate, S. , Lavorel, S. , & Gracia, C. (2003). Large‐scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography, 12(4), 313–325. 10.1046/j.1466-822X.2003.00033.x DOI
Treydte, K. , Frank, D. , Esper, J. , Andreu, L. , Bednarz, Z. , Berninger, F. , Boettger, T. , D'Alessandro, C. M. , Etien, N. , Filot, M. , Grabner, M. , Guillemin, M. T. , Gutierrez, E. , Haupt, M. , Helle, G. , Hilasvuori, E. , Jungner, H. , Kalela‐Brundin, M. , Krapiec, M. , … Schleser, G. H. (2007). Signal strength and climate calibration of a European tree‐ring isotope network. Geophysical Research Letters, 34(24), 10.1029/2007GL031106 DOI
United Nations . (2014). New York Declaration on Forests. United Nations.
Urban, D. L. , Bonan, G. B. , Smith, T. M. , & Shugart, H. H. (1991). Spatial applications of gap models. Forest Ecology and Management, 42(1), 95–110. 10.1016/0378-1127(91)90067-6 DOI
Urban, M. C. , Bocedi, G. , Hendry, A. P. , Mihoub, J.‐B. , Peer, G. , Singer, A. , Bridle, J. R. , Crozier, L. G. , De Meester, L. , Godsoe, W. , Gonzalez, A. , Hellmann, J. J. , Holt, R. D. , Huth, A. , Johst, K. , Krug, C. B. , Leadley, P. W. , Palmer, S. C. F. , Pantel, J. H. , … Travis, J. M. J. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466. 10.1126/science.aad8466 PubMed DOI
Vacchiano, G. , Ascoli, D. , Berzaghi, F. , Lucas‐Borja, M. E. , Caignard, T. , Collalti, A. , Mairota, P. , Palaghianu, C. , Reyer, C. P. O. , Sanders, T. G. M. , Schermer, E. , Wohlgemuth, T. , & Hacket‐Pain, A. (2018). Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 376, 40–53. 10.1016/j.ecolmodel.2018.03.004 DOI
Václavík, T. , Kupfer, J. A. , & Meentemeyer, R. K. (2012). Accounting for multi‐scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography, 39(1), 42–55. 10.1111/j.1365-2699.2011.02589.x DOI
Václavík, T. , & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73–83. 10.1111/j.1472-4642.2011.00854.x DOI
van der Sande, M. T. , Poorter, L. , Balvanera, P. , Kooistra, L. , Thonicke, K. , Boit, A. , Dutrieux, L. P. , Equihua, J. , Gerard, F. , Herold, M. , Kolb, M. , Simões, M. , & Peña‐Claros, M. (2017). The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability, 26(Supplement C), 69–76. 10.1016/j.cosust.2017.01.016 DOI
van Oijen, M. , Reyer, C. , Bohn, F. J. , Cameron, D. R. , Deckmyn, G. , Flechsig, M. , Härkönen, S. , Hartig, F. , Huth, A. , Kiviste, A. , Lasch, P. , Mäkelä, A. , Mette, T. , Minunno, F. , & Rammer, W. (2013). Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecology and Management, 289, 255–268. 10.1016/j.foreco.2012.09.043 DOI
Van Nes, E. H. , & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecological Modelling, 185(2–4), 153–164. 10.1016/j.ecolmodel.2004.12.001 DOI
van Oijen, M. , Rougier, J. , & Smith, R. (2005). Bayesian calibration of process‐based forest models: Bridging the gap between models and data. Tree Physiology, 25(7), 915–927. 10.1093/treephys/25.7.915 PubMed DOI
Veloz, S. D. , Williams, J. W. , Blois, J. L. , He, F. , Otto‐Bliesner, B. , & Liu, Z. (2012). No‐analog climates and shifting realized niches during the late quaternary: Implications for 21st‐century predictions by species distribution models. Global Change Biology, 18(5), 1698–1713. 10.1111/j.1365-2486.2011.02635.x DOI
Verbeeck, H. , & Kearsley, E. (2016). The importance of including lianas in global vegetation models. PNAS, 113(1), E4. 10.1073/pnas.1521343113 PubMed DOI PMC
Verheijen, L. M. , Aerts, R. , Brovkin, V. , Cavender‐Bares, J. , Cornelissen, J. H. C. , Kattge, J. , & van Bodegom, P. M. (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 21(8), 3074–3086. 10.1111/gcb.12871 PubMed DOI
Vira, B. , Wildburger, C. , & Mansourian, S. (Eds.). (2015). Forests, trees and landscapes for food security and nutrition a global assessment report. International Union of Forest Research Organizations (IUFRO), Vienna. Retrieved from. http://www.iufro.org/fileadmin/material/publications/iufro‐series/ws33/ws33.pdf
von Bloh, W. , Rost, S. , Gerten, D. , & Lucht, W. (2010). Efficient parallelization of a dynamic global vegetation model with river routing. Environmental Modelling & Software, 25, 685–690. 10.1016/j.envsoft.2009.11.012 DOI
von Bloh, W. , Schaphoff, S. , Müller, C. , Rolinski, S. , Waha, K. , & Zaehle, S. (2018). Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 11(7), 2789–2812. 10.5194/gmd-11-2789-2018 DOI
von Humboldt, A. (1849). Aspects of nature, in different lands and different climates; with scientific elucidations. Lea and Blanchard.xx
Wang, B. , Shuman, J. , Shugart, H. H. , & Lerdau, M. T. (2018). Biodiversity matters in feedbacks between climate change and air quality: A study using an individual‐based model. Ecological Applications, 28(5), 1223–1231. 10.1002/eap.1721 PubMed DOI
Wang, Y. P. , Law, R. M. , & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261–2282. 10.5194/bg-7-2261-2010 DOI
Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology, 35(1/2), 1–22. 10.2307/2256497 DOI
Woodward, F. I. , & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306–308. 10.1111/j.1654-1103.1996.tb00489.x DOI
Wright, J. S. (2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130(1), 1–14. 10.1007/s004420100809 PubMed DOI
Xiaodong, Y. , & Shugart, H. H. (2005). FAREAST: A forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography, 32(9), 1641–1658. 10.1111/j.1365-2699.2005.01293 DOI
Yousefpour, R. , Augustynczik, A. L. D. , Reyer, C. P. O. , Lasch‐Born, P. , Suckow, F. , & Hanewinkel, M. (2018). Realizing mitigation efficiency of European commercial forests by climate smart forestry. Scientific Reports, 8(1), 345. 10.1038/s41598-017-18778-w PubMed DOI PMC
Yue, C. , Ciais, P. , Cadule, P. , Thonicke, K. , Archibald, S. , Poulter, B. , Hao, W. M. , Hantson, S. , Mouillot, F. , Friedlingstein, P. , Maignan, F. , & Viovy, N. (2014). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: Simulating historical global burned area and fire regimes. Geoscientific Model Development, 7(6), 2747–2767. 10.5194/gmd-7-2747-2014 DOI
Yue, C. , Ciais, P. , Cadule, P. , Thonicke, K. , & van Leeuwen, T. T. (2015). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 8(5), 1321–1338. 10.5194/gmd-8-1321-2015 DOI
Zaehle, S. , Sitch, S. , Prentice, I. C. , Liski, J. , Cramer, W. , Erhard, M. , & Smith, B. (2006). The importance of age‐related decline in forest NPP for modelling regional carbon balances. Ecological Applications, 16(4), 1555–1574. 10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2 PubMed DOI
Zolkos, S. G. , Goetz, S. J. , & Dubayah, R. (2013). A meta‐analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–298. 10.1016/j.rse.2012.10.01 DOI
Zuidema, P. A. , Baker, P. J. , Groenendijk, P. , Schippers, P. , van der Sleen, P. , Vlam, M. , & Sterck, F. (2013). Tropical forests and global change: Filling knowledge gaps. Trends in Plant Science, 18(8), 413–419. 10.1016/j.tplants.2013.05.006 PubMed DOI