A Single Conserved Amino Acid Residue as a Critical Context-Specific Determinant of the Differential Ability of Mdm2 and MdmX RING Domains to Dimerize
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
31024344
PubMed Central
PMC6465955
DOI
10.3389/fphys.2019.00390
Knihovny.cz E-resources
- Keywords
- E3, Mdm2, Mdm4, MdmX, RING domain ubiquitin protein ligase, dimerization, mutagenesis, p53,
- Publication type
- Journal Article MeSH
Mdm2 and MdmX are related proteins serving in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer as an E3 ubiquitin ligase for the tumor suppressor p53. The dimerization is required for the E3 activity and is mediated by the conserved RING domains present in both proteins, but only the RING domain of Mdm2 can form homodimers efficiently. We performed a systematic mutational analysis of human Mdm2, exchanging parts of the RING with the corresponding MdmX sequence, to identify the molecular determinants of this difference. Mdm2 can also promote MdmX degradation, and we identified several mutations blocking it. They were located mainly at the Mdm2/E2 interface and did not disrupt the MdmX-Mdm2 interaction. Surprisingly, some mutations of the Mdm2/E2 interface inhibited MdmX degradation, which is mediated by the Mdm2/MdmX heterodimer, but did not affect p53 degradation, mediated by the Mdm2 homodimer. Only one mutant, replacing a conserved cysteine 449 with asparagine (C449N), disrupted the ability of Mdm2 to dimerize with MdmX. When we introduced the cysteine residue into the corresponding site in MdmX, the RING domain became capable of forming dimers with other MdmX molecules in vivo, suggesting that one conserved amino acid residue in the RINGs of Mdm2 and MdmX could serve as the determinant of the differential ability of these domains to form dimers and their E3 activity. In immunoprecipitations, however, the homodimerization of MdmX could be observed only when the asparagine residue was replaced with cysteine in both RINGs. This result suggested that heterocomplexes consisting of one mutated MdmX RING with cysteine and one wild-type MdmX RING with asparagine might be less stable, despite being readily detectable in the cell-based assay. Moreover, Mdm2 C449N blocked Mdm2-MdmX heterodimerization but did not disrupt the ability of Mdm2 homodimer to promote p53 degradation, suggesting that the effect of the conserved cysteine and asparagine residues on dimerization was context-specific. Collectively, our results indicate that the effects of individual exchanges of conserved residues between Mdm2 and MdmX RING domains might be context-specific, supporting the hypothesis that Mdm2 RING homodimers and Mdm2-MdmX heterodimers may not be entirely structurally equivalent, despite their apparent similarity.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
See more in PubMed
Argentini M., Barboule N., Wasylyk B. (2001). The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Oncogene 20, 1267–1275. 10.1038/sj.onc.1204241, PMID: PubMed DOI
Bista M., Petrovich M., Fersht A. R. (2013). MDMX contains an autoinhibitory sequence element. Proc. Natl. Acad. Sci. USA 110, 17814–17819. 10.1073/pnas.1317398110 PubMed DOI PMC
Chen L., Borcherds W., Wu S., Becker A., Schonbrunn E., Daughdrill G. W., et al. (2015). Autoinhibition of MDMX by intramolecular p53 mimicry. Proc. Natl. Acad. Sci. USA 112, 4624–4629. 10.1073/pnas.1420833112 PubMed DOI PMC
Chen J., Marechal V., Levine A. J. (1993). Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107–4114. 10.1128/MCB.13.7.4107, PMID: PubMed DOI PMC
Cheng Q., Song T., Chen L., Chen J. (2014). Autoactivation of the MDM2 E3 ligase by intramolecular interaction. Mol. Cell. Biol. 34, 2800–2810. 10.1128/MCB.00246-14, PMID: PubMed DOI PMC
Dang J., Kuo M., Eischen C., Stepanova L., Sherr C. J., Roussel M. F. (2002). The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res. 62, 1222–1230. PMID: PubMed
Dolezelova P., Cetkovska K., Vousden K. H., Uldrijan S. (2012a). Mutational analysis of Mdm2 C-terminal tail suggests an evolutionarily conserved role of its length in Mdm2 activity toward p53 and indicates structural differences between Mdm2 homodimers and Mdm2 / MdmX heterodimers. Cell Cycle 11, 953–962. 10.4161/cc.11.5.19445 PubMed DOI PMC
Dolezelova P., Cetkovska K., Vousden K. H., Uldrijan S. (2012b). Mutational analysis reveals a dual role of Mdm2 acidic domain in the regulation of p53 stability. FEBS Lett. 586, 2225–2231. 10.1016/j.febslet.2012.05.034 PubMed DOI
Egorova O., Sheng Y. (2014). A site-directed mutagenesis study of the MdmX RING domain. Biochem. Biophys. Res. Commun. 447, 696–701. 10.1016/j.bbrc.2014.04.065, PMID: PubMed DOI
Fang S., Jensen J. P., Ludwig R. L., Vousden K. H., Weissman A. M. (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951. 10.1074/jbc.275.12.8945, PMID: PubMed DOI
Furmanová K., Byška J., Gröller E. M., Viola I., Paleček J. J., Kozlíková B. (2018). COZOID: contact zone identifier for visual analysis of protein-protein interactions. BMC Bioinform. 19, 1–17. 10.1186/s12859-018-2113-6 PubMed DOI PMC
Gu J., Kawai H., Nie L., Kitao H., Wiederschain D., Jochemsen A. G., et al. . (2002). Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem. 277, 19251–19254. 10.1074/jbc.C200150200, PMID: PubMed DOI
Huang L., Yan Z., Liao X., Li Y., Yang J., Wang Z.-G., et al. (2011). The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl. Acad. Sci. USA 108, 12001–12006. 10.1073/pnas.1102309108 PubMed DOI PMC
Iyappan S., Wollscheid H. P., Rojas-Fernandez A., Marquardt A., Tang H. C., Singh R. K., et al. . (2010). Turning the RING domain protein MdmX into an active ubiquitin-protein ligase. J. Biol. Chem. 285, 33065–33072. 10.1074/jbc.M110.115113, PMID: PubMed DOI PMC
Jones S. N., Roe A. E., Donehower L. A., Bradley A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208. 10.1038/378206a0, PMID: PubMed DOI
Kawai H., Lopez-Pajares V., Kim M. M., Wiederschain D., Yuan Z.-M. (2007). RING domain-mediated interaction is a requirement for MDM2’s E3 ligase activity. Cancer Res. 67, 6026–6030. 10.1158/0008-5472.CAN-07-1313, PMID: PubMed DOI
Kawai H., Wiederschain D., Yuan Z. (2003). Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol. Cell. Biol. 23, 4939–4947. 10.1128/mcb.23.14.4939-4947.2003, PMID: PubMed DOI PMC
Kostic M., Matt T., Martinez-Yamout M. A., Dyson H. J., Wright P. E. (2006). Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J. Mol. Biol. 363, 433–450. 10.1016/j.jmb.2006.08.027, PMID: PubMed DOI
Li C., Chen L., Chen J. (2002). DNA damage induces MDMX nuclear translocation by p53-dependent and -independent mechanisms. Mol. Cell. Biol. 22, 7562–7571. 10.1128/mcb.22.21.7562-7571.2002, PMID: PubMed DOI PMC
Linares L. K., Hengstermann A., Ciechanover A., Müller S., Scheffner M. (2003). HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl. Acad. Sci. USA 100, 12009–12014. 10.1073/pnas.2030930100 PubMed DOI PMC
Linke K., Mace P. D., Smith C. A., Vaux D. L., Silke J., Day C. L. (2008). Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848. 10.1038/sj.cdd.4402309, PMID: PubMed DOI
Marine J.-C., Francoz S., Maetens M., Wahl G., Toledo F., Lozano G. (2006). Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934. 10.1038/sj.cdd.4401912, PMID: PubMed DOI
Metzger M. B., Pruneda J. N., Klevit R. E., Weissman A. M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta Mol. Cell Res. 1843, 47–60. 10.1016/j.bbamcr.2013.05.026, PMID: PubMed DOI PMC
Meulmeester E., Frenk R., Stad R., de Graaf P., Marine J., Vousden K. H., et al. . (2003). Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol. Cell. Biol. 23, 4929–4938. 10.1128/mcb.23.14.4929-4938.2003, PMID: PubMed DOI PMC
Migliorini D., Lazzerini Denchi E., Danovi D., Jochemsen A., Capillo M., Gobbi A., et al. . (2002). Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol. 22, 5527–5538. 10.1128/MCB.22.15.5527-5538.2002, PMID: PubMed DOI PMC
Momand J., Jung D., Wilczynski S., Niland J. (1998). The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459. 10.1093/nar/26.15.3453, PMID: PubMed DOI PMC
Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245. 10.1016/0092-8674(92)90644-R, PMID: PubMed DOI
Montes de Oca Luna R., Wagner D. S., Lozano G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206. 10.1038/378203a0, PMID: PubMed DOI
Nomura K., Klejnot M., Kowalczyk D., Hock A. K., Sibbet G. J., Vousden K. H., et al. . (2017). Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat. Struct. Mol. Biol. 24, 578–587. 10.1038/nsmb.3414, PMID: PubMed DOI PMC
Parant J., Chavez-Reyes A., Little N. A., Yan W., Reinke V., Jochemsen A. G., et al. . (2001). Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet. 29, 92–95. 10.1038/ng714, PMID: PubMed DOI
Poyurovsky M. V., Priest C., Kentsis A., Borden K. L. B., Pan Z.-Q., Pavletich N., et al. (2007). The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90–101. 10.1038/sj.emboj.7601465 PubMed DOI PMC
Ringshausen I., O’Shea C. C., Finch A. J., Swigart L. B., Evan G. I. (2006). Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514. 10.1016/j.ccr.2006.10.010, PMID: PubMed DOI
Sharp D. A., Kratowicz S. A., Sank M. J., George D. L. (1999). Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274, 38189–38196. 10.1074/jbc.274.53.38189, PMID: PubMed DOI
Shvarts A., Steegenga W. T., Riteco N., van Laar T., Dekker P., Bazuine M., et al. . (1996). MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 15, 5349–5357. 10.1002/j.1460-2075.1996.tb00919.x, PMID: PubMed DOI PMC
Singh R. K., Iyappan S., Scheffner M. (2007). Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. J. Biol. Chem. 282, 10901–10907. 10.1074/jbc.M610879200, PMID: PubMed DOI
Stad R., Little N. A., Xirodimas D. P., Frenk R., van der Eb A. J., Lane D. P., et al. . (2001). Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2, 1029–1034. 10.1093/embo-reports/kve227, PMID: PubMed DOI PMC
Stad R., Ramos Y. F. M., Little N., Grivell S., Attema J., Van der Eb A. J., et al. . (2000). Hdmx stabilizes Mdm2 and p53. J. Biol. Chem. 275, 28039–28044. 10.1074/jbc.M003496200, PMID: PubMed DOI
Tan B. X., Liew H. P., Chua J. S., Ghadessy F. J., Tan Y. S., Lane D. P., et al. (2016). Anatomy of Mdm2 and Mdm4 in evolution. J. Mol. Cell Biol. 9, 3–15. 10.1093/jmcb/mjx002 PubMed DOI PMC
Tanimura S., Ohtsuka S., Mitsui K., Shirouzu K., Yoshimura A., Ohtsubo M. (1999). MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447, 5–9. 10.1016/S0014-5793(99)00254-9, PMID: PubMed DOI
Toledo F., Wahl G. M. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–923. 10.1038/nrc2012, PMID: PubMed DOI
Uldrijan S., Pannekoek W.-J., Vousden K. H. (2007). An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102–112. 10.1038/sj.emboj.7601469 PubMed DOI PMC