Photosynthetic and Growth Responses of Arundo donax L. Plantlets Under Different Oxygen Deficiency Stresses and Reoxygenation

. 2019 ; 10 () : 408. [epub] 20190405

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31024585

Promotion of nonfood species production to marginal, degraded lands abandoned by mainstream agriculture is affected by extremes of water availability (droughts and floods), which have increased in frequency and intensity and account for severe yield reduction. Arundo donax L., known as giant cane or giant reed, spontaneously grows in different kinds of environments with limitation to low temperature and is thus widespread in temperate and hot areas around the world. Moreover, this perennial rhizomatous grass has been recognized as a leading candidate crop in the Mediterranean for lignocellulosic feedstock due to its high C3 photosynthetic capacity, positive energy balance and low agroecological management demand. In this study, the photosynthetic performance and growth response of A. donax to waterlogging and submergence stress following a time course as well as their respective re-oxygenation were analyzed under reproducible and controlled environment conditions. Results of growth response showed that biomass production was strongly conditioned by the availability of oxygen. In fact, only waterlogged plants showed similar growth capacity to those under control conditions, while plants under submergence resulted in a dramatic reduction of this trait. The simultaneous measurements of both gas exchanges and chlorophyll fluorescence highlighted an alteration of both stomatal and non-stomatal photosynthetic behaviors during a short/medium period of oxygen deprivation and re-oxygenation. Photosynthetic CO2 uptake was strictly related to a combination of stomatal and mesophyll diffusional constrains, depending on the severity of the treatment and exposure time. Conditions of waterlogging and hypoxia revealed a slight growth plasticity of the species in response to prolonged stress conditions, followed by a fast recovery upon reoxygenation. Moreover, the rapid restoration of physiological functions after O2 deprivation testifies to the environmental plasticity of this species, although prolonged O2 shortage proved detrimental to A. donax by hampering growth and photosynthetic CO2 uptake.

Zobrazit více v PubMed

Ahmed S., Nawata E., Hosokawa M., Domae Y., Sakuratani T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163, 117–123. 10.1016/S0168-9452(02)00080-8 DOI

Alpuerto J. B., Hussain R. M. F., Fukao T. (2016). The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant Cell Environ. 39, 672–684. 10.1111/pce.12661, PMID: PubMed DOI

Angelini L. G., Ceccarini L., Bonari E. (2005). Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in Central Italy as related to different management practices. Eur. J. Agron. 22, 375–389. 10.1016/j.eja.2004.05.004 DOI

Araki T., Oo T. T., Kubota F. (2014). Effects of flooding treatments on photosynthetic activity of different greengram (Vigna radiata (L.) Wilczek) cultivars. Environ. Control Biol. 52, 1–5. 10.2525/ecb.52.1 DOI

Bailey-Serres J., Lee S. C., Brinton E. (2012). Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698–1709. 10.1104/pp.112.208173, PMID: PubMed DOI PMC

Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. 10.18637/jss.v067.i01 DOI

Bell G. P. (1997). “Ecology and management of Arundo donax, and approaches to riparian habitat restoration in Southern California” in Plant invasions: Studies from North America and Europe. eds. Brock J. H., Wade M., Pysek P., Green D. (Leiden, The Netherlands: Backhuys Publishers; ), 103–113.

Black K., Davis P., Grath J. M., Doherty P., Osborne B. (2005). Interactive effects of irradiance and water availability on the photosynthetic performance of Picea sitchensis seedlings: implications for seedling establishment under different management practices. Ann. Forest Sci. 62, 413–422. 10.1051/forest:2005037 DOI

Blokhina O., Virolainen E., Fagerstedt K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194. 10.1093/aob/mcf118, PMID: PubMed DOI PMC

Centritto M., Lauteri M., Monteverdi M. C., Serraj R. (2009). Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. J. Exp. Bot. 60, 2325–2339. 10.1093/jxb/erp123, PMID: PubMed DOI

Chaves M. M., Pereira J. S., Maroco J., Rodrigues M. L., Ricardo C. P. P., Osóirio M. L., et al. . (2002). How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89, 907–916. 10.1093/aob/mcf105, PMID: PubMed DOI PMC

Else J. A. (1996). Post-flood establishment of native woody species and an exotic, Arundo donax, in a southern Californian riparian system. San Diego State University http://books.google.com.br/books?id=Tc5HtwAACAAJ

Else M. A., Coupland D., Dutton L., Jackson M. B. (2001). Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol. Plant. 111, 46–54. 10.1034/j.1399-3054.2001.1110107.x DOI

Else M. A., Janowiak F., Atkinson C. J., Jackson M. B. (2009). Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 103, 313–323. 10.1093/aob/mcn208, PMID: PubMed DOI PMC

Farquhar G. D., Sharkey T. D. (1982). Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345. 10.1146/annurev.pp.33.060182.001533 DOI

Fernández M. D. (2006). Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. Photosynthetica 44, 32–38. 10.1007/s11099-005-0155-2 DOI

Fiorini L., Guglielminetti L., Mariotti L., Curadi M., Picciarelli P., Scartazza A., et al. (2016). Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. Micro-tom growth. Plant Soil 400, 351–366. 10.1007/s11104-015-2736-6 DOI

Flexas J., Ribas-Carbó M., Diaz-Espejo A., Galmés J., Medrano H. (2008). Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31, 602–621. 10.1111/j.1365-3040.2007.01757.x, PMID: PubMed DOI

Fukao T., Yeung E., Bailey-Serres J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23, 412–427. 10.1105/tpc.110.080325, PMID: PubMed DOI PMC

Galmés J., Flexas J., Keys A. J., Cifre J., Mitchell R. A. C., Madgwick P. J., et al. (2005). Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ. 28, 571–579. 10.1111/j.1365-3040.2005.01300.x DOI

Gaur R. K., Sharma P. K. (2013). Molecular approaches in plant abiotic stress. (Boca Raton, FL: CRC Press; ).

Gibbs J., Greenway H. (2003). Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30:353. 10.1071/PP98095_ER PubMed DOI

Gopalakrishnan G., Cristina Negri M., Snyder S. W. (2011). A novel framework to classify marginal land for sustainable biomass feedstock production. J. Environ. Qual. 40, 1593–1600. 10.2134/jeq2010.0539, PMID: PubMed DOI

Guidi L., Calatayud A. (2014). Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 103, 42–52. 10.1016/j.envexpbot.2013.12.007 DOI

Herrera A., Tezara W., Marín O., Rengifo E. (2008). Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiol. Plant. 134, 41–48. 10.1111/j.1399-3054.2008.01099.x, PMID: PubMed DOI

Hothorn T., Bretz F., Westfall P. (2008). Simultaneous inference in general parametric models. Biom. J. 50, 346–363. 10.1002/bimj.200810425, PMID: PubMed DOI

Jackson M. B., Hall K. C. (1987). Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ. 10, 121–130. 10.1111/1365-3040.ep11602085 DOI

Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. 10.18637/jss.v082.i13 DOI

Lê S., Josse J., Husson F. (2008). FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18. 10.18637/jss.v025.i01 DOI

Lewandowski I., Scurlock J. M. O., Lindvall E., Christou M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25, 335–361. 10.1016/S0961-9534(03)00030-8 DOI

Licausi F., Perata P. (2009). Low oxygen signaling and tolerance in plants. Adv. Bot. Res. 50, 139–198.

Liu Z., Cheng R., Xiao W., Guo Q., Wang N. (2014). Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS One 9:e107636. 10.1371/journal.pone.0107636, PMID: PubMed DOI PMC

Loreto F., Harley P. C., Di Marco G., Sharkey T. D. (1992). Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol. 98, 1437–1443. 10.1104/pp.98.4.1437, PMID: PubMed DOI PMC

Luo F.-L., Nagel K. A., Zeng B., Schurr U., Matsubara S. (2009). Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species. Ann. Bot. 104, 1435–1444. 10.1093/aob/mcp257, PMID: PubMed DOI PMC

Malik A. I., Colmer T. D., Lambers H., Schortemeyer M. (2001). Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct. Plant Biol. 28, 1121–1131. 10.1071/PP01089 DOI

Mauchamp A., Méthy M. (2004). Submergence-induced damage of photosynthetic apparatus in Phragmites australis. Environ. Exp. Bot. 51, 227–235. 10.1016/j.envexpbot.2003.11.002 DOI

Moldau H. (1973). Effects of various water regimes on stomatal and mesophyll conductances of bean leaves. Photosynthetica 7, 1–7.

Pompeiano A., Guglielminetti L., Bargiacchi E., Miele S. (2013). Responses in chemical traits and biomass allocation of Arundo donax L. to deficit resources in the establishment year. Chil. J. Agric. Res. 73, 377–384. 10.4067/S0718-58392013000400008 DOI

Pompeiano A., Huarancca Reyes T., Moles T. M., Villani M., Volterrani M., Guglielminetti L., et al. (2017a). Inter- and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation. Physiol. Plant. 161, 385–399. 10.1111/ppl.12608 PubMed DOI

Pompeiano A., Landi M., Meloni G., Vita F., Guglielminetti L., Guidi L. (2017b). Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress. Plant Biosyst. 151, 613–622. 10.1080/11263504.2016.1187680 DOI

Pompeiano A., Remorini D., Vita F., Guglielminetti L., Miele S., Morini S. (2017c). Growth and physiological response of Arundo donax L. to controlled drought stress and recovery. Plant Biosyst. 151, 906–914. 10.1080/11263504.2016.1249427 DOI

Pompeiano A., Vita F., Alpi A., Guglielminetti L. (2015). Arundo donax L. response to low oxygen stress. Environ. Exp. Bot. 111, 147–154. 10.1016/j.envexpbot.2014.11.003 DOI

Pucciariello C., Perata P. (2017). New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant Cell Environ. 40, 473–482. 10.1111/pce.12715, PMID: PubMed DOI

R Core Team (2018). R: A language and environment for statistical computing. 3.5.1 edn. (Vienna, Austria: R Foundation for Statistical Computing; ).

Ren B., Zhang J., Dong S., Liu P., Zhao B. (2016). Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions. J. Agron. Crop Sci. 202, 564–575. 10.1111/jac.12183 DOI

Rengifo E., Tezara W., Herrera A. (2005). Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. Photosynthetica 43, 203–210. 10.1007/s11099-005-0034-x DOI

Rodríguez-Gamir J., Ancillo G., González-Mas M. C., Primo-Millo E., Iglesias D. J., Forner-Giner M. A. (2011). Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol. Biochem. 49, 636–645. 10.1016/j.plaphy.2011.03.003, PMID: PubMed DOI

Roháček K., Barták M. (1999). Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37, 339–363. 10.1023/A:1007172424619 DOI

Santaniello A., Scartazza A., Gresta F., Loreti E., Biasone A., Di Tommaso D., et al. (2017). Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 8:1362. 10.3389/fpls.2017.01362 PubMed DOI PMC

Scartazza A., Di Baccio D., Bertolotto P., Gavrichkova O., Matteucci G. (2016). Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol. 36, 1060–1076. 10.1093/treephys/tpw038 PubMed DOI

Scartazza A., Picciarelli P., Mariotti L., Curadi M., Barsanti L., Gualtieri P. (2017). The role of Euglena gracilis paramylon in modulating xylem hormone levels, photosynthesis and water-use efficiency in Solanum lycopersicum L. Physiol. Plant. 161, 486–501. 10.1111/ppl.12611, PMID: PubMed DOI

Setter T. L., Bhekasut P., Greenway H. (2010). Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Funct. Plant Biol. 37, 1096–1104. 10.1071/FP10025 DOI

Shahzad Z., Canut M., Tournaire-Roux C., Martinière A., Boursiac Y., Loudet O., et al. (2016). A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell 167, 87.e14–98.e14. 10.1016/j.cell.2016.08.068 PubMed DOI

Smethurst C. F., Garnett T., Shabala S. (2005). Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270, 31–45. 10.1007/s11104-004-1082-x DOI

Sorrentino G., Haworth M., Wahbi S., Mahmood T., Zuomin S., Centritto M. (2016). Abscisic acid induces rapid reductions in mesophyll conductance to carbon dioxide. PLoS One 11:e0148554. 10.1371/journal.pone.0148554, PMID: PubMed DOI PMC

Tamang B., Fukao T. (2015). Plant adaptation to multiple stresses during submergence and following desubmergence. Int. J. Mol. Sci. 16, 30164–30180. 10.3390/ijms161226226 PubMed DOI PMC

Voesenek L. A. C. J., Bailey-Serres J. (2015). Flood adaptive traits and processes: an overview. New Phytol. 206, 57–73. 10.1111/nph.13209, PMID: PubMed DOI

Webster R. J., Driever S. M., Kromdijk J., McGrath J., Leakey A. D. B., Siebke K., et al. (2016). High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Sci. Rep. 6:20694. 10.1038/srep20694 PubMed DOI PMC

Wickham H. (2009). ggplot2: Elegant graphics for data analysis. (New York: Springer; ).

Yeung E., van Veen H., Vashisht D., Sobral Paiva A. L., Hummel M., Rankenberg T., et al. . (2018). A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 115, 6085–6094. 10.1073/pnas.1803841115, PMID: PubMed DOI PMC

Yordanova R. Y., Popova L. P. (2007). Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29, 535–541. 10.1007/s11738-007-0064-z DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...