Influence of Electrospinning Parameters on the Hydrophilicity of Electrospun Polycaprolactone Nanofibres

. 2019 Nov 01 ; 19 (11) : 7251-7260.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31039883

In the present study, PCL (polycaprolactone) nanofibres were produced by the electrospinning method. The use of PCL electrospun biopolymer in biomedical applications has attracted considerable interest due to its chemical resistance, biodegradability, biocompatibility, and non-toxic characteristics. However, the hydrophobic nature of PCL polymer restricts the useage of PCL nanofibres for the cell adhesion and absorption. A hydrophilic and biocompatible PCL electrospun mat with a low water contact angle is an attractive strategy for development in tissue engineering and wound dressing. In this study, we demonstrate a feasible and simple method to produce hydrophilic PCL nanofibres for possible application in wound dressing. Chloroform/ethanol (EtOH) and chloroform/dimethylformamide (DMF) mixtures were used as two different solvent systems. The impact of the polymeric solution concentration, applied voltage, and solvent mixtures on the fibre surface morphology and water contact angle was investigated. Consequently, bead structures were observed at low concentrations but disappeared with increases in the concentration. It was observed that the size of beads decreased and the diameter of fibres increased with increasing voltage. The wettability of the webs changed from hydrophobic to hydrophilic with changes of the polymer concentration. The contact angle of the nanofibre mats decreased in both solvent systems as the concentration increased. The results showed that the lowest contact angle was obtained in 24% wt. PCL+chloroform/EtOH solution and was 68°. The highest contact angle was obtained in 4% wt. PCL+chloroform/EtOH solution and was 112°. Using this method, the surface hydrophilicity of the PCL nanofibres improved easily without any surface treatment.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chemical Cleaning Process of Polymeric Nanofibrous Membranes

. 2022 Mar 09 ; 14 (6) : . [epub] 20220309

Electrospun Antibacterial Nanomaterials for Wound Dressings Applications

. 2021 Nov 23 ; 11 (12) : . [epub] 20211123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...