• This record comes from PubMed

First detection and genetic characterization of ungulate tetraparvovirus 2 and ungulate tetraparvovirus 4 in special livestock on the Qinghai-Tibet Plateau in China

. 2019 May 02 ; 16 (1) : 56. [epub] 20190502

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
31702311 National Natural Science Foundation of China - International
No. 17JR5RA141 Natural Science Foundation of Gansu Province - International

Links

PubMed 31046791
PubMed Central PMC6498466
DOI 10.1186/s12985-019-1167-z
PII: 10.1186/s12985-019-1167-z
Knihovny.cz E-resources

Tetraparvovirus, formerly known as Partetravirus, is a newly discovered genus in the family Parvoviridae that is considered phylogenetically distinct from other parvoviruses. However, nothing is known about the prevalence of Tetraparvovirus in special livestock living on the Qinghai-Tibet Plateau of China, such as Tibetan pigs and Tibetan sheep. A pair of special primers was designed based on the conserved regions in the genome of ungulate tetraparvovirus 2 (P-PARV4) and ungulate tetraparvovirus 4 (O-PARV4) and was used to detect P-PARV4 in domestic pigs and Tibetan pigs and O-PARV4 in ovines and Tibetan sheep. The results showed a 15.59 and 9.38% prevalence of P-PARV4 in domestic pigs (18.96% in Gansu Province and 11.76% in Qinghai Province) and Tibetan pigs (14.28% in Gansu Province and 4.44% in Qinghai Province), respectively, and a 7.31 and 5.20% prevalence of O-PARV4 in ovines (6.61% in Gansu Province and 8.00% in Qinghai Province) and Tibetan sheep (4.55% in Gansu Province and 5.50% in Qinghai Province), respectively. The prevalence of P-PARV4 was 14.76% (31/210) for ≤1-month-old pigs and 10.58% (20/189) for > 1-month-old pigs, and the positive rates of O-PARV4 were 7.65% (18/235) for ≤1-month-old sheep and 5.05% (11/218) for > 1-month-old sheep. The phylogenetic analysis of NS1, VP1, VP2 and the whole PARV4-related provirus genome demonstrated that both P-PARV4 and O-PARV4 sequences in this study were more closely related to the sequences of other strains discovered in the same genus of animals. The identity analyses for the full-length VP2 genomes of O-PARV4 revealed 98.84-100.00% sequence identity among the 7 strains and the previously reported strain, which was 98.60-99.28% for P-PARV4. In the present study, for the first time, we have provided comprehensive information regarding the widespread infection of P-PARV4 and O-PARV4 in special livestock on the Qinghai-Tibet Plateau in China. Our present findings highlight the importance of epidemiologic surveillance to limit the spread of Tetraparvovirus in livestock at high altitudes in China.

See more in PubMed

Lau SK, Woo PC, Tse H, Fu CT, Au WK, Chen XC, Tsoi HW, Tsang TH, Chan JS, Tsang DN, Li KS, Tse CW, Ng TK, Tsang OT, Zheng BJ, Tam S, Chan KH, Zhou B, Yuen KY. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J Gen Virol. 2008;89:1840–1848. doi: 10.1099/vir.0.2008/000380-0. PubMed DOI

Csagola A, Zadori Z. Meszaros ITuboly T. detection of porcine parvovirus 2 (ungulate Tetraparvovirus 3) specific antibodies and examination of the serological profile of an infected swine herd. PLoS One. 2016;11:e0151036. doi: 10.1371/journal.pone.0151036. PubMed DOI PMC

Xu F, Pan Y, Wang M, Wu X, Tian L, Baloch AR, Zeng Q. First detection of ungulate tetraparvovirus 1 (bovine hokovirus 1) in domestic yaks in northwestern China. Arch Virol. 2016;161:177–180. doi: 10.1007/s00705-015-2638-1. PubMed DOI

Pan Y, Zeng Q, Zhu C, Hua X, Wang M, Pan K, Cui L. Frequency and characterization of porcine hokovirus (PHoV) in domestic pigs in eastern China. Arch Virol. 2012;157:1785–1788. doi: 10.1007/s00705-012-1350-7. PubMed DOI

Tse H, Tsoi HW, Teng JL, Chen XC, Liu H, Zhou B, Zheng BJ, Woo PC, Lau SK, Yuen KY. Discovery and genomic characterization of a novel ovine partetravirus and a new genotype of bovine partetravirus. PLoS One. 2011;6:e25619. doi: 10.1371/journal.pone.0025619. PubMed DOI PMC

Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, Zhang J, Jiang A, Li J, Zhou C, Zhang J, Liu Y, Sun X, Zhao H, Niu Z, Lou P, Xian L, Shen X, Liu S, Zhang S, Zhang M, Zhu L, Shuai S, Bai L, Tang G, Liu H, Jiang Y, Mai M, Xiao J, Wang X, Zhou Q, Wang Z, Stothard P, Xue M, Gao X, Luo Z, Gu Y, Zhu H, Hu X, Zhao Y, Plastow GS, Wang J, Jiang Z, Li K, Li N, Li X, Li R. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013;45:1431–1438. doi: 10.1038/ng.2811. PubMed DOI

Megens HJ, Crooijmans RP, San Cristobal M, Hui X, Li NGroenen MA. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol. 2008;40:103–128. PubMed PMC

Xu F, Pan Y, Baloch AR, Tian L, Wang M, Na W, Ding L, Zeng Q. Hepatitis E virus genotype 4 in yak, northwestern China. Emerg Infect Dis. 2014;20:2182–2184. doi: 10.3201/eid2012.131599. PubMed DOI PMC

Zhu W, Dong JB, Zhang J, Uchida K, Watanabe K, Goto Y, Haga T. Bos grunniens papillomavirus type 1: a novel deltapapillomavirus associated with fibropapilloma in yak. J Gen Virol. 2013;94:159–165. doi: 10.1099/vir.0.046086-0. PubMed DOI

Ma JG, Cong W, Zhang FH, Feng SY, Zhou DH, Wang YM, Zhu XQ, Yin H, Hu GX. Seroprevalence and risk factors of bovine viral diarrhoea virus (BVDV) infection in yaks (Bos grunniens) in Northwest China. Trop Anim Health Prod. 2016;48:1747–1750. doi: 10.1007/s11250-016-1118-2. PubMed DOI

Liu GH, Zhou DH, Cong W, Zhang XX, Shi XC, Danba C, Huang SY, Zhu XQ. First report of seroprevalence of swine influenza a virus in Tibetan pigs in Tibet, China. Trop Anim Health Prod. 2014;46:257–259. doi: 10.1007/s11250-013-0458-4. PubMed DOI

Fan B, Zhang H, Bai J, Liu X, Li Y, Wang X, Jiang P. Pathogenesis of highly pathogenic porcine reproductive and respiratory syndrome virus in Chinese Tibetan swine. Res Vet Sci. 2016;108:33–37. doi: 10.1016/j.rvsc.2016.07.012. PubMed DOI

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Adlhoch C, Kaiser M, Ellerbrok HPauli G. High prevalence of porcine Hokovirus in German wild boar populations. Virol J. 2010;7:171. doi: 10.1186/1743-422X-7-171. PubMed DOI PMC

Souza CK, Streck AF, Goncalves KR, Pinto LD, Ravazzolo AP, de Barcellos DE, Canal CW. Phylogenetic characterization of the first ungulate tetraparvovirus 2 detected in pigs in Brazil. Braz J Microbiol. 2016;47:513–517. doi: 10.1016/j.bjm.2016.01.025. PubMed DOI PMC

Cadar D, Csagola A, Lorincz M, Tombacz K, Spinu MTuboly T. Distribution and genetic diversity of porcine hokovirus in wild boars. Arch Virol. 2011;156:2233–2239. doi: 10.1007/s00705-011-1125-6. PubMed DOI

Ma JG, Zhang XX, Zheng WB, Xu YT, Zhu XQ, Hu GX, Zhou DH. Seroprevalence and risk factors of bluetongue virus infection in Tibetan sheep and yaks in Tibetan plateau, China. Biomed Res Int. 2017;2017:5139703. PubMed PMC

Wang J, Blasdell KR. Yin HWalker PJ. A large-scale serological survey of Akabane virus infection in cattle, yak, sheep and goats in China. Vet Microbiol. 2017;207:7–12. doi: 10.1016/j.vetmic.2017.05.014. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...