Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31052395
PubMed Central
PMC6567795
DOI
10.3390/nano9050676
PII: nano9050676
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, chalcogenide thin films, pulsed laser deposition, spectroscopic ellipsometry,
- Publikační typ
- časopisecké články MeSH
Ge-Sb-Te thin films were obtained by ns-, ps-, and fs-pulsed laser deposition (PLD) in various experimental conditions. The thickness of the samples was influenced by the Nd-YAG laser wavelength, fluence, target-to-substrate distance, and deposition time. The topography and chemical analysis results showed that the films deposited by ns-PLD revealed droplets on the surface together with a decreased Te concentration and Sb over-stoichiometry. Thin films with improved surface roughness and chemical compositions close to nominal values were deposited by ps- and fs-PLD. The X-ray diffraction and Raman spectroscopy results showed that the samples obtained with ns pulses were partially crystallized while the lower fluences used in ps- and fs-PLD led to amorphous depositions. The optical parameters of the ns-PLD samples were correlated to their structural properties.
Faculty of Chemical Technology University of Pardubice 53210 Pardubice Czech Republic
Faculty of Physics Al 1 Cuza University of Iasi 700506 Iasi Romania
National Institute for Lasers Plasma and Radiation Physics RO 077125 Magurele Bucharest Romania
Université de Rennes 1 CNRS ISCR ⁻UMR 6226 F 35000 Rennes France
Zobrazit více v PubMed
Yamada N., Ohno E., Akahira N., Nishiuchi K., Nagata K., Takao M. High Speed Overwritable Phase Change Optical Disk Material. Jpn. J. Appl. Phys. 1987;26:61–66. doi: 10.7567/JJAPS.26S4.61. DOI
Wang L., Yang C., Wen J., Xiong B. Amorphization Optimization of Ge2Sb2Te5 Media for Electrical Probe Memory Applications. Nanometer. 2018;8:368. doi: 10.3390/nano8060368. PubMed DOI PMC
Kolobov A.V., Fons P., Tominaga J., Frenkel A.I., Ankudinov A.L., Yannopoulos S.N., Andrikopoulos K.S., Uruga T. Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem. Jpn. J. Appl. Phys. 2005;44:3345–3349. doi: 10.1143/JJAP.44.3345. DOI
Kolobov A.V., Fons P., Tominaga J., Uruga T. Why DVDs work the way they do: The nanometer-scale mechanism of phase change in Ge–Sb–Te alloys. J. Non-Cryst. Solids. 2006;352:1612–1615. doi: 10.1016/j.jnoncrysol.2005.09.050. DOI
Kolobov A.V., Tominaga J. Chalcogenides. Springer; Berlin/Heidelberg, Germany: 2012. Metastability and Phase Change Phenomena.
Nemec P., Nazabal V., Moreac A., Gutwirth J., Beneš L., Frumar M. Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy. Mater. Chem. Phys. 2012;136:935–941. doi: 10.1016/j.matchemphys.2012.08.024. DOI
Raoux S., Ielmini D., Wuttig M., Karpov I. Phase Change Materials. MRS Bull. 2012;37:118–123. doi: 10.1557/mrs.2011.357. DOI
Zhang W., Mazzarello R., Wuttig M., Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019;4:150–168. doi: 10.1038/s41578-018-0076-x. DOI
Olivier M., Němec P., Boudebs G., Boidin R., Focsa C., Nazabal V. Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films. Opt. Mater. Express. 2015;5:781. doi: 10.1364/OME.5.000781. DOI
Yamada N. Origin, secret, and application of the ideal phase-change material GeSbTe. Phys. Status Solidi. 2012;249:1837–1842. doi: 10.1002/pssb.201200618. DOI
Wang J.J., Xu Y.Z., Mazzarello R., Wuttig M., Zhang W. A review on disorder-driven metal-insulator transition in crystalline vacancy-rich GeSbTe phase-change materials. Materials. 2017;10:862. doi: 10.3390/ma10080862. PubMed DOI PMC
Vlček M., Schroeter S., Čech J., Wágner T., Glaser T. Selective etching of chalcogenides and its application for fabrication of diffractive optical elements. J. Non-Cryst. Solids. 2003;326–327:515–518. doi: 10.1016/S0022-3093(03)00463-0. DOI
Gutwirth J., Wagner T., Bezdicka P., Hrdlicka M., Vlcek M., Frumar M. On angle resolved RF magnetron sputtering of GeSbTe thin films. J. Non-Cryst. Solids. 2009;355:1935–1938. doi: 10.1016/j.jnoncrysol.2009.04.060. DOI
Nazabal V., Charpentier F., Adam J.L., Nemec P., Lhermite H., Brandily-Anne M.L., Charrier J., Guin J.P., Moréac A. Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films. Int. J. Appl. Ceram. Technol. 2011;8:990–1000. doi: 10.1111/j.1744-7402.2010.02571.x. DOI
Musgraves J.D., Carlie N., Hu J., Petit L., Agarwal A., Kimerling L.C., Richardson K.A. Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques. Acta Mater. 2011;59:5032–5039. doi: 10.1016/j.actamat.2011.04.060. DOI
Lee J., Choi S., Lee C., Kang Y., Kim D. GeSbTe deposition for the PRAM application. Appl. Surf. Sci. 2007;253:3969–3976. doi: 10.1016/j.apsusc.2006.08.044. DOI
Mussler G., Ratajczak A., von der Ahe M., Du H., Grützmacher D. Metal organic vapor phase epitaxy of Ge1Sb2Te4 thin films on Si(111) substrate. Appl. Phys. A. 2019;125:1–7. doi: 10.1007/s00339-019-2465-4. DOI
Hilmi I., Rauschenbach B., Gerlach J.W., Thelander E., Schumacher P., Gerlach J.W., Rauschenbach B. Epitaxial Ge2Sb2Te5 films on Si(111) prepared by pulsed laser deposition. Thin Solid Films. 2016;619:81–85. doi: 10.1016/j.tsf.2016.10.028. DOI
Thelander E., Gerlach J.W., Ross U., Lotnyk A., Rauschenbach B. Low temperature epitaxy of Ge-Sb-Te films on BaF2(111) by pulsed laser deposition. Appl. Phys. Lett. 2014;105:1–6. doi: 10.1063/1.4903489. DOI
Song J.H., Susaki T., Hwang H.Y. Enhanced Thermodynamic Stability of Epitaxial Oxide Thin Films. Adv. Mater. 2008;20:2528–2532. doi: 10.1002/adma.200701919. DOI
Boschker J.E., Folven E., Monsen A.F., Wahlström E., Grepstad J.K., Tybell T. Consequences of high adatom energy during pulsed laser deposition of La0.7Sr0.3MnO3. Cryst. Growth Des. 2012;12:562–566. doi: 10.1021/cg201461a. DOI
Mihesan C., Gurlui S., Ziskind M., Chazallon B., Martinelli G., Zeghlache H., Guignard M., Nazabal V., Smektala F., Focsa C. Photo-excited desorption of multi-component systems: Application to chalcogenide glasses. Appl. Surf. Sci. 2005;248:224–230. doi: 10.1016/j.apsusc.2005.03.015. DOI
Irimiciuc S., Boidin R., Bulai G., Gurlui S., Nemec P., Nazabal V., Focsa C. Laser ablation of (GeSe2)100−x(Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics. Appl. Surf. Sci. 2016;418:594–600. doi: 10.1016/j.apsusc.2016.09.016. DOI
Pompilian O.G., Gurlui S., Nemec P., Nazabal V., Ziskind M., Focsa C. Plasma diagnostics in pulsed laser deposition of GaLaS chalcogenides. Appl. Surf. Sci. 2013;278:352–356. doi: 10.1016/j.apsusc.2012.11.069. DOI
Ursu C., Pompilian O.G., Gurlui S., Nica P., Agop M., Dudeck M., Focsa C. Al2O3 ceramics under high-fluence irradiation: plasma plume dynamics through space- and time-resolved optical emission spectroscopy. Appl. Phys. A. 2010;101:153–159. doi: 10.1007/s00339-010-5775-0. DOI
Pompilian O.G., Dascalu G., Mihaila I., Gurlui S., Olivier M., Nemec P., Nazabal V., Cimpoesu N., Focsa C. Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films. Appl. Phys. A. 2014;117:197–205. doi: 10.1007/s00339-014-8359-6. DOI
Dascalu G., Pompilian G., Chazallon B., Caltun O.F., Gurlui S., Focsa C. Femtosecond pulsed laser deposition of cobalt ferrite thin films. Appl. Surf. Sci. 2013;278:38–42. doi: 10.1016/j.apsusc.2013.02.107. DOI
Focsa C., Nemec P., Ziskind M., Ursu C., Gurlui S., Nazabal V. Laser ablation of AsxSe100−x chalcogenide glasses: Plume investigations. Appl. Surf. Sci. 2009;255:5307–5311. doi: 10.1016/j.apsusc.2008.07.204. DOI
Dascalu G., Pompilian G., Chazallon B., Nica V., Caltun O.F., Gurlui S., Focsa C. Rare earth doped cobalt ferrite thin films deposited by PLD. Appl. Phys. A. 2012;110:915–922. doi: 10.1007/s00339-012-7196-8. DOI
Chrisey D.B., Hubler G.K. Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Inc.; New York, NY, USA: 1994.
Nemec P., Přikryl J., Nazabal V., Frumar M. Optical characteristics of pulsed laser deposited Ge–Sb–Te thin films studied by spectroscopic ellipsometry. J. Appl. Phys. 2011;109:073520. doi: 10.1063/1.3569865. DOI
Bouška M., Pechev S., Simon Q., Boidin R., Nazabal V., Gutwirth J., Baudet E., Němec P. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films. Sci. Rep. 2016;6:26552. doi: 10.1038/srep26552. PubMed DOI PMC
Krusin-Elbaum L., Cabral C., Chen K.N., Copel M., Abraham D.W., Reuter K.B., Rossnagel S.M., Bruley J., Deline V.R. Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress. Appl. Phys. Lett. 2007;90:141902. doi: 10.1063/1.2719148. DOI
Prokhorov E., Gonzalez-Hernandez J., Hernandez-Landaverde M.A., Chao B., Morales-Sanchez E. Crystallization mechanism in Sb:Te thin film.pdf. J. Phys. Chem. Solids. 2007;68:883–886. doi: 10.1016/j.jpcs.2006.11.034. DOI
Andrikopoulos K.S., Yannopoulos S.N., Voyiatzis G.A., Kolobov A.V., Ribes M., Tominaga J. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. J. Phys. Condens. Matter. 2006;18:965–979. doi: 10.1088/0953-8984/18/3/014. DOI
Sosso G.C., Caravati S., Bernasconi M. Vibrational properties of crystalline Sb2Te3 from first principles. J. Phys. Condens. Matter. 2009;21:095410. doi: 10.1088/0953-8984/21/9/095410. PubMed DOI
Xu Z., Chen C., Wang Z., Wu K., Chong H., Ye H. Optical constants acquisition and phase change properties of Ge2Sb2Te5 thin films based on spectroscopy. RSC Adv. 2018;8:21040–21046. doi: 10.1039/C8RA01382A. PubMed DOI PMC
Murray M., Jose G., Richards B., Jha A. Femtosecond pulsed laser deposition of silicon thin films. Nanoscale Res. Lett. 2013;8:1–6. doi: 10.1186/1556-276X-8-272. PubMed DOI PMC
Katsuno T., Godet C., Orlianges J.C., Loir A.S., Garrelie F., Catherinot A. Optical properties of high-density amorphous carbon films grown by nanosecond and femtosecond pulsed laser ablation. Appl. Phys. A. 2005;81:471–476. doi: 10.1007/s00339-005-3257-6. DOI
Anoop K.K., Harilal S.S., Philip R., Bruzzese R., Amoruso S. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma. J. Appl. Phys. 2016;120:185901. doi: 10.1063/1.4967313. DOI
Anoop K.K., Ni X., Wang X., Amoruso S., Bruzzese R. Fast ion generation in femtosecond laser ablation of a metallic target at moderate laser intensity. Laser Phys. 2014;24:105902. doi: 10.1088/1054-660X/24/10/105902. DOI
Irimiciuc S.A., Gurlui S., Bulai G., Nica P., Agop M., Focsa C. Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: Influence of the target physical properties on the plume dynamics. Appl. Surf. Sci. 2017;417:108–118. doi: 10.1016/j.apsusc.2017.03.055. DOI
Nica P., Gurlui S., Osiac M., Agop M., Ziskind M., Focsa C. Investigation of femtosecond laser-produced plasma from various metallic targets using the Langmuir probe characteristic. Phys. Plasmas. 2017;24:103119. doi: 10.1063/1.5006076. DOI
Vinod E.M., Singh A.K., Ganesan R., Sangunni K.S. Effect of selenium addition on the GeTe phase change memory alloys. J. Alloys Compd. 2012;537:127–132. doi: 10.1016/j.jallcom.2012.05.064. DOI
Vinod E.M., Naik R., Ganesan R., Sangunni K.S. Signatures of Ge2Sb2Te5 film at structural transitions. J. Non-Cryst. Solids. 2012;358:2927–2930. doi: 10.1016/j.jnoncrysol.2012.07.021. DOI
Van Eijk J.M. Ph.D. Thesis. RWTH Aachen University; Aachen, Germany: Dec 17, 2010. Structural Analysis of Phase-Change Materials Using X-ray Absorption Measurements.
Wei S., Wu S., Pei F., Li J., Wang S., Chen L. Theoretical and Experimental Investigations of the Optical Properties of Ge2Sb2Te5 for Multi-State Optical Data Storage. J. Korean Phys. Soc. 2008;53:2265–2269.
Hilton A.R. Chalcogenide Glasses for Infrared. Optical Materials. Appl. Opt. 1966;5:1877–1882. doi: 10.1364/AO.5.001877. PubMed DOI
Nechache R., Harnagea C., Li S., Cardenas L., Huang W., Chakrabartty J., Rosei F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics. 2014;61:61–67. doi: 10.1038/nphoton.2014.255. DOI
Nemec P., Moreac A., Nazabal V., Pavlišta M., Přikryl J., Frumar M. Ge-Sb-Te thin films deposited by pulsed laser An ellipsometry and Raman scattering spectroscopy study. J. Appl. Phys. 2009;106:103509. doi: 10.1063/1.3259435. DOI
Lee B.-S., Abelson J.R., Bishop S.G., Kang D.-H., Cheong B., Kim K.-B. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 2005;97:093509. doi: 10.1063/1.1884248. DOI