Molecular Responses in THP-1 Macrophage-Like Cells Exposed to Diverse Nanoparticles

. 2019 May 02 ; 9 (5) : . [epub] 20190502

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31052583

Grantová podpora
LO1508; CZ.02.1.01/0.0/0.0/16_019/0000765; LM2015073; CZ.02.1.01/0.0/0.0/16_013/0001821; LM2015062 Ministry of Youth, Education and Sports of the Czech Republic
CZ.2.16/3.1.00/21528; CZ.2.16/3.1.00/24507 Operational Program Prague-Competitiveness
CZ.02.1.01/0.0/0.0/16_013/0001775 OP RDE

In the body, engineered nanoparticles (NPs) may be recognized and processed by immune cells, among which macrophages play a crucial role. We evaluated the effects of selected NPs [NM-100 (TiO2), NM-110 (ZnO), NM-200 (SiO2), and NM-300 K (Ag)] on THP-1 macrophage-like cells. The cells were exposed to subcytotoxic concentrations of NPs (1-25 µg/mL) and the expression of immunologically relevant genes (VCAM1, TNFA, CXCL8, ICAM1, CD86, CD192, and IL1B) was analyzed by RT-qPCR. The expression of selected cytokines, growth factors and surface molecules was assessed by flow cytometry or ELISA. Generation of reactive oxygen species and induction of DNA breaks were also analyzed. Exposure to diverse NPs caused substantially different molecular responses. No significant effects were detected for NM-100 treatment. NM-200 induced production of IL-8, a potent attractor and activator of neutrophils, growth factors (VEGF and IGF-1) and superoxide. NM-110 triggered a proinflammatory response, characterized by the activation of transcription factor NF-κB, an enhanced production of proinflammatory cytokines (TNF-α) and chemokines (IL-8). Furthermore, the expression of cell adhesion molecules VCAM-1 and ICAM-1 and hepatocyte growth factor (HGF), as well as superoxide production and DNA breaks, were affected. NM-300 K enhanced IL-8 production and induced DNA breaks, however, it decreased the expression of chemokine receptor (CCR2) and CD86 molecule, indicating potential immunosuppressive activity. The toxicity of ZnO and Ag NPs was probably caused by their intracellular dissolution, as indicated by transmission electron microscopy imaging. The observed effects in macrophages might further influence both innate and adaptive immune responses by promoting neutrophil recruitment via IL-8 release and enhancing the adhesion and stimulation of T cells by VCAM-1 and ICAM-1 expression.

Zobrazit více v PubMed

Johnston H.J., Hutchison G., Christensen F.M., Peters S., Hankin S., Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010;40:328–346. doi: 10.3109/10408440903453074. PubMed DOI

Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010;7:5. doi: 10.1186/1743-8977-7-5. PubMed DOI PMC

Asseffa A., Dickson L.A., Mohla S., Bremner T.A. Phorbol-myristate acetate-differentiated thp-1 cells display increased levels of mhc class-i and class-ii messenger-rna and interferon-gamma-inducible tumoricidal activity. Oncol. Res. 1993;5:11–18. PubMed

Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI

Lynch I., Weiss C., Valsami-Jones E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today. 2014;9:266–270. doi: 10.1016/j.nantod.2014.05.001. DOI

Jensen K.A. Final Protocol for Producing Suitable Manufactured Nanomaterial Exposure—Standard Operation Procedure (SOP) and Background Documentation. The National Research Centre for the Working Environment (NRCWE); Copenhagen, Denmark: 2011.

Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantitation of low-levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Ritz C., Streibig J.C. Bioassay analysis using R. J. Stat. Softw. 2005;12:1–22. doi: 10.18637/jss.v012.i05. DOI

Klein C.L., Comero S., Stahlmecke B., Romazanov J., Kuhlbusch T.A.J., Van Doren E., De Temmerman P.-J., Mast J., Wick P., Krug H., et al. Series of Representative Manufactured Nanomaterials: NM-300 Silver Characterisation, Stability, Homogeneity. Publications Office of the European Union; Luxembourg, Luxembourg: 2011. p. 84.

Rasmussen K., Mech A., Mast J., De Temmerman P.-J., Waegeneers N., Van Steen F., Pizzolon J.C., De Temmerman L., Van Doren E., Jensen K.A., et al. Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties. Publications Office of the European Union; Luxembourg, Luxembourg: 2013. p. 200.

Rasmussen K., Mast J., De Temmerman P.-J., Verleysen E., Waegeneers N., Van Steen F., Pizzolon J.C., De Temmerman L., Van Doren E., Jensen K.A., et al. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico Chemical Properties. Publications Office of the European Union; Luxembourg, Luxembourg: 2014. p. 218.

Singh C., Friedrichs S., Levin M., Birkedal R., Jensen K.A., Pojana G., Wohlleben W., Schulte S., Wiench K., Turney T., et al. NM-Series of Representative Manufactured Nanomaterials—Zinc Oxide NM-110, NM-111, NM-112, NM-113: Characterisation and Test Item Preparation. Publications Office of the European Union; Luxembourg: 2011.

Wells M.A., Abid A., Kennedy I.M., Barakat A.I. Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology. 2012;6:837–846. doi: 10.3109/17435390.2011.625131. PubMed DOI PMC

Lin P.-C., Lin S., Wang P.C., Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014;32:711–726. doi: 10.1016/j.biotechadv.2013.11.006. PubMed DOI PMC

Totaro S., Cotogno G., Rasmussen K., Pianella F., Roncaglia M., Olsson H., Riego Sintes J.M., Crutzen H.P. The JRC Nanomaterials Repository: A unique facility providing representative test materials for nanoEHS research. Regul. Toxicol. Pharmacol. 2016;81:334–340. doi: 10.1016/j.yrtph.2016.08.008. PubMed DOI

Brzicova T., Sikorova J., Milcova A., Vrbova K., Klema J., Pikal P., Lubovska Z., Philimonenko V., Franco F., Topinka J., et al. Nano-TiO2 stability in medium and size as important factors of toxicity in macrophage-like cells. Toxicol. Vitr. 2019;54:178–188. doi: 10.1016/j.tiv.2018.09.019. PubMed DOI

Costantini L.M., Gilberti R.M., Knecht D.A. The Phagocytosis and Toxicity of Amorphous Silica. PLoS ONE. 2011;6:e14647. doi: 10.1371/journal.pone.0014647. PubMed DOI PMC

Cassano D., Summa M., Pocoví-Martínez S., Mapanao A.-K., Catelani T., Bertorelli R., Voliani V. Biodegradable Ultrasmall-in-Nano Gold Architectures: Mid-Period In Vivo Distribution and Excretion Assessment. Part. Part. Syst. Charact. 2019;36:1800464. doi: 10.1002/ppsc.201800464. DOI

Morris A.S., Adamcakova-Dodd A., Lehman S.E., Wongrakpanich A., Thorne P.S., Larsen S.C., Salem A.K. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs. Toxicol. Lett. 2016;241:207–215. doi: 10.1016/j.toxlet.2015.11.006. PubMed DOI PMC

Napierska D., Thomassen L.C.J., Lison D., Martens J.A., Hoet P.H. The nanosilica hazard: Another variable entity. Part. Fibre Toxicol. 2010;7:39. doi: 10.1186/1743-8977-7-39. PubMed DOI PMC

Klein C.L., Wiench K., Wiemann M., Ma-Hock L., van Ravenzwaay B., Landsiedel R. Hazard identification of inhaled nanomaterials: Making use of short-term inhalation studies. Arch. Toxicol. 2012;86:1137–1151. doi: 10.1007/s00204-012-0834-2. PubMed DOI

Peruzzi F., Prisco M., Dews M., Salomoni P., Grassilli E., Romano G., Calabretta B., Baserga R. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol. Cell. Biol. 1999;19:7203–7215. doi: 10.1128/MCB.19.10.7203. PubMed DOI PMC

Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi: 10.1038/nm0603-669. PubMed DOI

Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Physiol. 2001;280:C1358–C1366. doi: 10.1152/ajpcell.2001.280.6.C1358. PubMed DOI

Kasprzak A., Kwasniewski W., Adamek A., Gozdzicka-Jozefiak A. Insulin-like growth factor (IGF) axis in cancerogenesis. Mutat. Res. Rev. Mutat. Res. 2017;772:78–104. doi: 10.1016/j.mrrev.2016.08.007. PubMed DOI

Wu J.B., Tang Y.L., Liang X.H. Targeting VEGF pathway to normalize the vasculature: An emerging insight in cancer therapy. Onco Targets Ther. 2018;11:6901–6909. doi: 10.2147/OTT.S172042. PubMed DOI PMC

Cho W.S., Duffin R., Howie S.E., Scotton C.J., Wallace W.A., Macnee W., Bradley M., Megson I.L., Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011;8:27. doi: 10.1186/1743-8977-8-27. PubMed DOI PMC

Triboulet S., Triboulet S., Aude-Garcia C., Armand L., Gerdil A., Diemer H., Proamer F., Collin-Faure V., Habert A., Strub J.M., et al. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: A combined targeted and proteomic approach. Nanoscale. 2014;6:6102–6114. doi: 10.1039/C4NR00319E. PubMed DOI

Xia T., Kovochich M., Liong M., Mädler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano. 2008;2:2121–2134. doi: 10.1021/nn800511k. PubMed DOI PMC

Kuschner W.G., Dalessandro A., Wong H.F., Blanc P.D. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ. Res. 1997;75:7–11. doi: 10.1006/enrs.1997.3765. PubMed DOI

Collins T., Read M.A., Neish A.S., Whitley M.Z., Thanos D., Maniatis T. Transcriptional regulation of endothelial-cell adhesion molecules: Nf-kappa-b and cytokine-inducible enhancers. FASEB J. 1995;9:899–909. doi: 10.1096/fasebj.9.10.7542214. PubMed DOI

Philipp W., Gottinger W. Leukocyte adhesion molecules in diseased corneas. Investig. Ophthalmol. Vis. Sci. 1993;34:2449–2459. PubMed

De Silva D.M., Roy A., Kato T., Cecchi F., Lee Y.H., Matsumoto K., Bottaro D.P. Targeting the hepatocyte growth factor/Met pathway in cancer. Biochem. Soc. Trans. 2017;45:855–870. doi: 10.1042/BST20160132. PubMed DOI

Park E.J., Yi J., Kim Y., Choi K., Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro. 2010;24:872–878. doi: 10.1016/j.tiv.2009.12.001. PubMed DOI

Gliga A.R., Skoglund S., Wallinder I.O., Fadeel B., Karlsson H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:11. doi: 10.1186/1743-8977-11-11. PubMed DOI PMC

Huo L., Chen R., Zhao L., Shi X., Bai R., Long D., Chen F., Zhao Y., Chang Y.Z., Chen C. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials. 2015;61:307–315. doi: 10.1016/j.biomaterials.2015.05.029. PubMed DOI

Yilma A.N., Singh S.R., Dixit S., Dennis V.A. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int. J. Nanomed. 2013;8:2421–2432. doi: 10.2147/ijn.s44090. PubMed DOI PMC

Bhol K.C., Schechter P.J. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig. Dis. Sci. 2007;52:2732–2742. doi: 10.1007/s10620-006-9738-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...