The Immunomodulatory Effect of Silver Nanoparticles in a Retinal Inflammatory Environment
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
21 17720S
Grantová Agentura České Republiky
122
Grantová Agentura, Univerzita Karlova
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39190103
PubMed Central
PMC12234591
DOI
10.1007/s10753-024-02128-w
PII: 10.1007/s10753-024-02128-w
Knihovny.cz E-resources
- Keywords
- Microglia, Neovascularization, Neuroinflammation, Retinal diseases, Silver nanoparticles,
- MeSH
- Metal Nanoparticles * administration & dosage MeSH
- Macrophages drug effects immunology MeSH
- Microglia drug effects immunology metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Retina * drug effects immunology pathology MeSH
- Silver * pharmacology administration & dosage therapeutic use MeSH
- Inflammation drug therapy MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Silver * MeSH
Activation of immune response plays an important role in the development of retinal diseases. One of the main populations of immune cells contributing to the retinal homeostasis are microglia, which represent a population of residential macrophages. However, under pathological conditions, microglia become activated and rather support a harmful inflammatory reaction and retinal angiogenesis. Therefore, targeting these cells could provide protection against retinal neuroinflammation and neovascularization. In the recent study, we analyzed effects of silver nanoparticles (AgNPs) on microglia in vitro and in vivo. We showed that the AgNPs interact in vitro with stimulated mouse CD45/CD11b positive cells (microglia/macrophages), decrease their secretion of nitric oxide and vascular endothelial growth factor, and regulate the expression of genes for Iba-1 and interleukin-1β (IL-1β). In our in vivo experimental mouse model, the intravitreal application of a mixture of proinflammatory cytokines tumor necrosis factor-α, IL-1β and interferon-γ induced local inflammation and increased local expression of genes for inducible nitric oxide synthase, IL-α, IL-1β and galectin-3 in the retina. This stimulation of local inflammatory reaction was significantly inhibited by intravitreal administration of AgNPs. The application of AgNPs also decreased the presence of CD11b/Galectin-3 positive cells in neuroinflammatory retina, but did not influence viability of cells and expression of gene for rhodopsin in the retinal tissue. These data indicate that AgNPs regulate reactivity of activated microglia in the diseased retina and thus could provide a beneficial effect for the treatment of several retinal diseases.
See more in PubMed
Madeira, M.H., R. Boia, P.F. Santos, A.F. Ambrósio, and A.R. Santiago. 2015. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. PubMed PMC
Rashid, K., I. Akhtar-Schaefer, and T. Langmann. 2019. Microglia in retinal degeneration. PubMed PMC
Choi, S., L. Guo, and M.F. Cordeiro. 2021. Retinal and brain microglia in multiple sclerosis and neurodegeneration. PubMed PMC
Altmann, C., and M.H.H. Schmidt. 2018. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. PubMed PMC
Kinuthia, U.M., A. Wolf, and T. Langmann. 2020. Microglia and inflammatory responses in diabetic retinopathy. PubMed PMC
Noailles, A., V. Maneu, L. Campello, V. Gómez-Vicente, P. Lax, and N. Cuenca. 2016. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. PubMed PMC
Wooff, Y., S.M. Man, R. Aggio-Bruce, R. Natoli, and N. Fernando. 2019. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative Diseases. PubMed PMC
Liu, Y., C. Zhao, J. Meng, N. Li, Z. Xu, X. Liu, and S. Hou. 2022. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune uveitis. PubMed
Bauer, P.M., M.C. Zalis, H. Abdshill, T. Deierborg, F. Johansson, and U. Englund-Johansson. 2016. Inflamed in vitro retina: Cytotoxic neuroinflammation and galectin-3 expression. PubMed PMC
Puigdellívol, M., D.H. Allendorf, and G.C. Brown. 2020. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. PubMed PMC
Mendonça, H.R., J.N.A. Carvalho, C.A. Abreu, Mariano de Souza, D. Aguiar Dos Santos, J.R. Carvalho, S.A. Marques, K. da Costa Calaza, and A.M.B. Martinez. 2018. Lack of galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. PubMed
Lalancette-Hébert, M., V. Swarup, J.M. Beaulieu, I. Bohacek, E. Abdelhamid, Y.C. Weng, S. Sato, and J. Kriz. 2012. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. PubMed PMC
Klębowski, B., J. Depciuch, M. Parlińska-Wojtan, and J. Baran. 2018. Applications of noble metal-based nanoparticles in medicine. PubMed PMC
Yang, C., J. Yang, A. Lu, J. Gong, Y. Yang, X. Lin, M. Li, and H. Xu. 2022. Nanoparticles in ocular applications and their potential toxicity. PubMed PMC
Jo, D.H., J.H. Kim, Y.S. Yu, T.G. Lee, and J.H. Kim. 2012. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. PubMed
Jo, D.H., J.H. Kim, J.G. Son, N.W. Song, Y.I. Kim, Y.S. Yu, T.G. Lee, and J.H. Kim. 2014. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. PubMed
Song, H.B., J.S. Wi, D.H. Jo, J.H. Kim, S.W. Lee, T.G. Lee, and J.H. Kim. 2017. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: Inhibitory effect on retinal neovascularization without unbearable toxicity. PubMed
Fiorani, L., M. Passacantando, S. Santucci, S. Di Marco, S. Bisti, and R. Maccarone. 2015. Cerium oxide nanoparticles reduce microglial activation and neurodegenerative events in light damaged retina. PubMed PMC
De Matteis, V., and L. Rizzello. 2020. Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A Perspective. PubMed PMC
Zhang, X.F., Z.G. Liu, W. Shen, and S. Gurunathan. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. PubMed PMC
Brzicova, T., E. Javorkova, K. Vrbova, A. Zajicova, V. Holan, D. Pinkas, V. Philimonenko, J. Sikorova, J. Klema, J. Topinka, and P. Rossner Jr. 2019. Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. PubMed PMC
Hermankova, B., J. Kossl, P. Bohacova, E. Javorkova, M. Hajkova, M. Krulova, A. Zajicova, and V. Holan. 2019. The immunomodulatory potential of mesenchymal stem cells in a retinal inflammatory environment. PubMed
Lin, J., P. Chen, Z. Tan, Y. Sun, W.K. Tam, D. Ao, W. Shen, V.Y. Leung, K.M.C. Cheung, and M.K.T. To. 2023. Application of silver nanoparticles for improving motor recovery after spinal cord injury via reduction of pro-inflammatory M1 macrophages. PubMed PMC
Söderstjerna, E., P. Bauer, T. Cedervall, H. Abdshill, F. Johansson, and U.E. Johansson. 2014. Silver and gold nanoparticles exposure to in vitro cultured retina–studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PubMed PMC
Hinze, A., and A. Stolzing. 2011. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. PubMed PMC
Chauhan, M.Z., P.A. Rather, S.M. Samarah, A.M. Elhusseiny, and A.B. Sallam. 2022. Current and novel therapeutic approaches for treatment of diabetic macular edema. PubMed PMC
Wesley, U.V., R. Vemuganti, E.R. Ayvaci, and R.J. Dempsey. 2013. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. PubMed PMC
Lappas, C.M. 2015. The immunomodulatory effects of titanium dioxide and silver nanoparticles. PubMed
Vuković, B., Ž Cvetić, K. Bendelja, R. Barbir, M. Milić, B. Dobrošević, V. Šerić, and I. Vinković Vrček. 2021. In vitro study on the immunomodulatory effects of differently functionalized silver nanoparticles on human peripheral blood mononuclear cells. PubMed PMC
Mohammapdour, R., and H. Ghandehari. 2022. Mechanisms of immune response to inorganic nanoparticles and their degradation products. PubMed PMC
Radwan, I.M., A. Gitipour, P.M. Potter, D.D. Dionysiou, and S.R. Al-Abed. 2019. Dissolution of Silver Nanoparticles in Colloidal Consumer Products: Effects of Particle Size and Capping Agent. PubMed PMC
Fahmy, H.M., A.M. Mosleh, A.A. Elghany, E. Shams-Eldin, E.S. Abu Serea, S.A. Ali, and A.E. Shalan. 2019. Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. PubMed PMC
Velgosova, O., L. Mačák, E. Múdra, M. Vojtko, and M. Lisnichuk. 2023. Preparation, Structure, and Properties of PVA-AgNPs Nanocomposites. PubMed PMC
Matras, E., A. Gorczyca, S.W. Przemieniecki, and M. Oćwieja. 2022. Surface properties-dependent antifungal activity of silver nanoparticles. PubMed PMC