The Immunomodulatory Effect of Silver Nanoparticles in a Retinal Inflammatory Environment
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21 17720S
Grantová Agentura České Republiky
21 17720S
Grantová Agentura České Republiky
21 17720S
Grantová Agentura České Republiky
21 17720S
Grantová Agentura České Republiky
21 17720S
Grantová Agentura České Republiky
21 17720S
Grantová Agentura České Republiky
122
Grantová Agentura, Univerzita Karlova
122
Grantová Agentura, Univerzita Karlova
122
Grantová Agentura, Univerzita Karlova
122
Grantová Agentura, Univerzita Karlova
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39190103
DOI
10.1007/s10753-024-02128-w
PII: 10.1007/s10753-024-02128-w
Knihovny.cz E-zdroje
- Klíčová slova
- Microglia, Neovascularization, Neuroinflammation, Retinal diseases, Silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
Activation of immune response plays an important role in the development of retinal diseases. One of the main populations of immune cells contributing to the retinal homeostasis are microglia, which represent a population of residential macrophages. However, under pathological conditions, microglia become activated and rather support a harmful inflammatory reaction and retinal angiogenesis. Therefore, targeting these cells could provide protection against retinal neuroinflammation and neovascularization. In the recent study, we analyzed effects of silver nanoparticles (AgNPs) on microglia in vitro and in vivo. We showed that the AgNPs interact in vitro with stimulated mouse CD45/CD11b positive cells (microglia/macrophages), decrease their secretion of nitric oxide and vascular endothelial growth factor, and regulate the expression of genes for Iba-1 and interleukin-1β (IL-1β). In our in vivo experimental mouse model, the intravitreal application of a mixture of proinflammatory cytokines tumor necrosis factor-α, IL-1β and interferon-γ induced local inflammation and increased local expression of genes for inducible nitric oxide synthase, IL-α, IL-1β and galectin-3 in the retina. This stimulation of local inflammatory reaction was significantly inhibited by intravitreal administration of AgNPs. The application of AgNPs also decreased the presence of CD11b/Galectin-3 positive cells in neuroinflammatory retina, but did not influence viability of cells and expression of gene for rhodopsin in the retinal tissue. These data indicate that AgNPs regulate reactivity of activated microglia in the diseased retina and thus could provide a beneficial effect for the treatment of several retinal diseases.
Zobrazit více v PubMed
Madeira, M.H., R. Boia, P.F. Santos, A.F. Ambrósio, and A.R. Santiago. 2015. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators of inflammation 2015: 673090. https://doi.org/10.1155/2015/673090 . PubMed DOI PMC
Rashid, K., I. Akhtar-Schaefer, and T. Langmann. 2019. Microglia in retinal degeneration. Frontiers in Immunology 10: 1975. https://doi.org/10.3389/fimmu.2019.01975 . PubMed DOI PMC
Choi, S., L. Guo, and M.F. Cordeiro. 2021. Retinal and brain microglia in multiple sclerosis and neurodegeneration. Cells 10 (6): 1507. https://doi.org/10.3390/cells10061507 . PubMed DOI PMC
Altmann, C., and M.H.H. Schmidt. 2018. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. International Journal of Molecular Sciences 19 (1): 110. https://doi.org/10.3390/ijms19010110 . PubMed DOI PMC
Kinuthia, U.M., A. Wolf, and T. Langmann. 2020. Microglia and inflammatory responses in diabetic retinopathy. Frontiers in Immunology 11: 564077. https://doi.org/10.3389/fimmu.2020.564077 . PubMed DOI PMC
Noailles, A., V. Maneu, L. Campello, V. Gómez-Vicente, P. Lax, and N. Cuenca. 2016. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Scientific Reports 6: 33356. https://doi.org/10.1038/srep33356 . PubMed DOI PMC
Wooff, Y., S.M. Man, R. Aggio-Bruce, R. Natoli, and N. Fernando. 2019. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative Diseases. Frontiers in Immunology 10: 1618. https://doi.org/10.3389/fimmu.2019.01618 . PubMed DOI PMC
Liu, Y., C. Zhao, J. Meng, N. Li, Z. Xu, X. Liu, and S. Hou. 2022. Galectin-3 regulates microglial activation and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune uveitis. Clinical Immunology (Orlando, Fla.) 236: 108939. https://doi.org/10.1016/j.clim.2022.108939 . PubMed DOI
Bauer, P.M., M.C. Zalis, H. Abdshill, T. Deierborg, F. Johansson, and U. Englund-Johansson. 2016. Inflamed in vitro retina: Cytotoxic neuroinflammation and galectin-3 expression. PLoS ONE 11 (9): e0161723. https://doi.org/10.1371/journal.pone.0161723 . PubMed DOI PMC
Puigdellívol, M., D.H. Allendorf, and G.C. Brown. 2020. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration. Frontiers in Cellular Neuroscience 14: 162. https://doi.org/10.3389/fncel.2020.00162 . PubMed DOI PMC
Mendonça, H.R., J.N.A. Carvalho, C.A. Abreu, Mariano de Souza, D. Aguiar Dos Santos, J.R. Carvalho, S.A. Marques, K. da Costa Calaza, and A.M.B. Martinez. 2018. Lack of galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Research 1700: 126–137. https://doi.org/10.1016/j.brainres.2018.07.018 . PubMed DOI
Lalancette-Hébert, M., V. Swarup, J.M. Beaulieu, I. Bohacek, E. Abdelhamid, Y.C. Weng, S. Sato, and J. Kriz. 2012. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 32 (30): 10383–10395. https://doi.org/10.1523/JNEUROSCI.1498-12.2012 . PubMed DOI
Klębowski, B., J. Depciuch, M. Parlińska-Wojtan, and J. Baran. 2018. Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences 19 (12): 4031. https://doi.org/10.3390/ijms19124031 . PubMed DOI PMC
Yang, C., J. Yang, A. Lu, J. Gong, Y. Yang, X. Lin, M. Li, and H. Xu. 2022. Nanoparticles in ocular applications and their potential toxicity. Frontiers in Molecular Biosciences 9: 931759. https://doi.org/10.3389/fmolb.2022.931759 . PubMed DOI PMC
Jo, D.H., J.H. Kim, Y.S. Yu, T.G. Lee, and J.H. Kim. 2012. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine : Nanotechnology, Biology, and Medicine 8 (5): 784–791. https://doi.org/10.1016/j.nano.2011.09.003 . PubMed DOI
Jo, D.H., J.H. Kim, J.G. Son, N.W. Song, Y.I. Kim, Y.S. Yu, T.G. Lee, and J.H. Kim. 2014. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine : Nanotechnology, Biology, and Medicine 10 (5): 1109–1117. https://doi.org/10.1016/j.nano.2014.02.007 . PubMed DOI
Song, H.B., J.S. Wi, D.H. Jo, J.H. Kim, S.W. Lee, T.G. Lee, and J.H. Kim. 2017. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: Inhibitory effect on retinal neovascularization without unbearable toxicity. Nanomedicine : Nanotechnology, Biology, and Medicine 13 (6): 1901–1911. https://doi.org/10.1016/j.nano.2017.03.016 . PubMed DOI
Fiorani, L., M. Passacantando, S. Santucci, S. Di Marco, S. Bisti, and R. Maccarone. 2015. Cerium oxide nanoparticles reduce microglial activation and neurodegenerative events in light damaged retina. PLoS ONE 10 (10): e0140387. https://doi.org/10.1371/journal.pone.0140387 . PubMed DOI PMC
De Matteis, V., and L. Rizzello. 2020. Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A Perspective. Cells 9 (3): 679. https://doi.org/10.3390/cells9030679 . PubMed DOI PMC
Zhang, X.F., Z.G. Liu, W. Shen, and S. Gurunathan. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 17 (9): 1534. https://doi.org/10.3390/ijms17091534 . PubMed DOI PMC
Brzicova, T., E. Javorkova, K. Vrbova, A. Zajicova, V. Holan, D. Pinkas, V. Philimonenko, J. Sikorova, J. Klema, J. Topinka, and P. Rossner Jr. 2019. Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials (Basel, Switzerland) 9 (5): 687. https://doi.org/10.3390/nano9050687 . PubMed DOI
Hermankova, B., J. Kossl, P. Bohacova, E. Javorkova, M. Hajkova, M. Krulova, A. Zajicova, and V. Holan. 2019. The immunomodulatory potential of mesenchymal stem cells in a retinal inflammatory environment. Stem Cell Reviews and Reports 15: 880–891. https://doi.org/10.1007/s12015-019-09908-0 . PubMed DOI
Lin, J., P. Chen, Z. Tan, Y. Sun, W.K. Tam, D. Ao, W. Shen, V.Y. Leung, K.M.C. Cheung, and M.K.T. To. 2023. Application of silver nanoparticles for improving motor recovery after spinal cord injury via reduction of pro-inflammatory M1 macrophages. Heliyon 9 (5): e15689. https://doi.org/10.1016/j.heliyon.2023.e15689 . PubMed DOI PMC
Söderstjerna, E., P. Bauer, T. Cedervall, H. Abdshill, F. Johansson, and U.E. Johansson. 2014. Silver and gold nanoparticles exposure to in vitro cultured retina–studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PLoS ONE 9 (8): e105359. https://doi.org/10.1371/journal.pone.0105359 . PubMed DOI PMC
Hinze, A., and A. Stolzing. 2011. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. BMC Cell Biology 12: 35. https://doi.org/10.1186/1471-2121-12-35 . PubMed DOI PMC
Chauhan, M.Z., P.A. Rather, S.M. Samarah, A.M. Elhusseiny, and A.B. Sallam. 2022. Current and novel therapeutic approaches for treatment of diabetic macular edema. Cells 11 (12): 1950. https://doi.org/10.3390/cells11121950 . PubMed DOI PMC
Wesley, U.V., R. Vemuganti, E.R. Ayvaci, and R.J. Dempsey. 2013. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Research 1496: 1–9. https://doi.org/10.1016/j.brainres.2012.12.008 . PubMed DOI
Lappas, C.M. 2015. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 85: 78–83. https://doi.org/10.1016/j.fct.2015.05.015 . PubMed DOI
Vuković, B., Ž Cvetić, K. Bendelja, R. Barbir, M. Milić, B. Dobrošević, V. Šerić, and I. Vinković Vrček. 2021. In vitro study on the immunomodulatory effects of differently functionalized silver nanoparticles on human peripheral blood mononuclear cells. Journal of Biological Inorganic Chemistry : JBIC : A Publication of the Society of Biological Inorganic Chemistry 26 (7): 817–831. https://doi.org/10.1007/s00775-021-01898-0 . PubMed DOI
Mohammapdour, R., and H. Ghandehari. 2022. Mechanisms of immune response to inorganic nanoparticles and their degradation products. Advanced Drug Delivery Reviews 180: 114022. https://doi.org/10.1016/j.addr.2021.114022 . PubMed DOI
Radwan, I.M., A. Gitipour, P.M. Potter, D.D. Dionysiou, and S.R. Al-Abed. 2019. Dissolution of Silver Nanoparticles in Colloidal Consumer Products: Effects of Particle Size and Capping Agent. Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology 21 (7): 1–155. https://doi.org/10.1007/s11051-019-4597-z . PubMed DOI
Fahmy, H.M., A.M. Mosleh, A.A. Elghany, E. Shams-Eldin, E.S. Abu Serea, S.A. Ali, and A.E. Shalan. 2019. Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. RSC Advances 9 (35): 20118–20136. https://doi.org/10.1039/c9ra02907a . PubMed DOI PMC
Velgosova, O., L. Mačák, E. Múdra, M. Vojtko, and M. Lisnichuk. 2023. Preparation, Structure, and Properties of PVA-AgNPs Nanocomposites. Polymers 15 (2): 379. https://doi.org/10.3390/polym15020379 . PubMed DOI PMC
Matras, E., A. Gorczyca, S.W. Przemieniecki, and M. Oćwieja. 2022. Surface properties-dependent antifungal activity of silver nanoparticles. Scientific Reports 12 (1): 18046. https://doi.org/10.1038/s41598-022-22659-2 . PubMed DOI PMC