Preparation of Selective and Reproducible SERS Sensors of Hg2+ Ions via a Sunlight-Induced Thiol⁻Yne Reaction on Gold Gratings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-43-703016
Russian Foundation for Basic Research
15-33459A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.2.69/0.0/0.0/16_027/0008351
the European Structural and Investment Funds, OP RDE-funded project 'ChemJets'
PubMed
31067761
PubMed Central
PMC6539914
DOI
10.3390/s19092110
PII: s19092110
Knihovny.cz E-zdroje
- Klíčová slova
- Hg2+ sensors, SERS, surface modification, water analysis,
- Publikační typ
- časopisecké články MeSH
In this contribution, we propose a novel functional surface-enhanced Raman spectroscopy (SERS) platform for the detection of one of the most hazardous heavy metal ions, Hg2+. The design of the proposed sensor is based on the combination of surface plasmon-polariton (SPP) supporting gold grating with the high homogeneity of the response and enhancement and mercaptosuccinic acid (MSA) based specific recognition layer. For the first time, diazonium grafted 4-ethynylphenyl groups have undergone the sunlight-induced thiol-yne reaction with MSA in the presence of Eosine Y. The developed SERS platform provides an extremely sensitive, selective, and convenient analytical procedure to detect mercury ions with limit of detection (LOD) as low as 10-10 M (0.027 µg/L) with excellent selectivity over other metals. The developed SERS sensor is compatible with a portable SERS spectrophotometer and does not require the expensive equipment for statistical methods of analysis.
Zobrazit více v PubMed
Li W.C., Tse H.F. Health Risk and Significance of Mercury in the Environment. Environ. Sci. Pollut. Res. 2015;22:192–201. doi: 10.1007/s11356-014-3544-x. PubMed DOI
Liang P., Feng X., Zhang C., Zhang J., Cao Y., You Q., Leung A.O.W., Wong M.-H., Wu S.-C. Human Exposure to Mercury in a Compact Fluorescent Lamp Manufacturing Area: By Food (Rice and Fish) Consumption and Occupational Exposure. Environ. Pollut. 2015;198:126–132. doi: 10.1016/j.envpol.2014.12.036. PubMed DOI
Yassa H.A. Autism: A Form of Lead and Mercury Toxicity. Environ. Toxicol. Pharmacol. 2014;38:1016–1024. doi: 10.1016/j.etap.2014.10.005. PubMed DOI
Walach H., Mutter J., Deth R. Inorganic Mercury and Alzheimer’s Disease—Results of a Review and a Molecular Mechanism. Diet Nutr. Dement. Cogn. Decline. 2015:593–601. doi: 10.1016/B978-0-12-407824-6.00055-0. DOI
Carocci A., Rovito N., Sinicropi M.S., Genchi G. Mercury Toxicity and Neurodegenerative Effects. Rev. Environ. Contam. Toxicol. 2014;229:1–18. doi: 10.1007/978-3-319-03777-6_1. PubMed DOI
Ha E., Basu N., Bose-O’Reilly S., Dórea J.G., McSorley E., Sakamoto M., Chan H.M. Current Progress on Understanding the Impact of Mercury on Human Health. Environ. Res. 2017;152:419–433. doi: 10.1016/j.envres.2016.06.042. PubMed DOI
Lemos V.A., dos Santos L.O. A New Method for Preconcentration and Determination of Mercury in Fish, Shellfish and Saliva by Cold Vapour Atomic Absorption Spectrometry. Food Chem. 2014;149:203–207. doi: 10.1016/j.foodchem.2013.10.109. PubMed DOI
Oliveira E.P., Yang L., Sturgeon R.E., Santelli R.E., Bezerra M.A., Willie S.N., Capilla R. Determination of Trace Metals in High-Salinity Petroleum Produced Formation Water by Inductively Coupled Plasma Mass Spectrometry Following on-Line Analyte Separation/Preconcentration. J. Anal. At. Spectrom. 2011;26:578–585. doi: 10.1039/c0ja00108b. DOI
Campanella B., Onor M., Ulivo A.D., Giannarelli S., Bramanti E. Impact of Protein Concentration on the Determination of Thiolic Groups of Ovalbumin: A Size Exclusion Chromatography–Chemical Vapor Generation–Atomic Fluorescence Spectrometry Study via Mercury Labeling. Anal. Chem. 2014;86:2251–2256. doi: 10.1021/ac4041795. PubMed DOI
Pietilä H., Perämäki P., Piispanen J., Majuri L., Starr M., Nieminen T., Kantola M., Ukonmaanaho L. Determination of methyl mercury in humic-rich natural water samples using N2-distillation with isotope dilution and on-line purge and trap GC-ICP-MS. Microchem. J. 2014;112:113–118. doi: 10.1016/j.microc.2013.10.002. DOI
Zhang Y., Liu Y., Zhen S.J., Huang C.Z. Graphene Oxide as an Efficient Signal-to-Background Enhancer for DNA Detection with a Long Range Resonance Energy Transfer Strategy. Chem. Commun. 2011;47:11718. doi: 10.1039/c1cc14491j. PubMed DOI
Guo Y., Zhang Y., Shao H., Wang Z., Wang X., Jiang X. Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal. Chem. 2014;86:8530–8534. doi: 10.1021/ac502461r. PubMed DOI
Chen L., Zhao Y., Wang Y., Zhang Y., Liu Y., Han X.X., Zhao B., Yang J. Mercury Species Induced Frequency-Shift of Molecular Orientational Transformation Based on SERS. Analyst. 2016;141:4782–4788. doi: 10.1039/C6AN00945J. PubMed DOI
Wang Y., Wen G., Ye L., Liang A., Jiang Z. Label-Free SERS Study of Galvanic Replacement Reaction on Silver Nanorod Surface and Its Application to Detect Trace Mercury Ion. Sci. Rep. 2016;6:19650. doi: 10.1038/srep19650. PubMed DOI PMC
Guselnikova O., Postnikov P., Erzina M., Kalachyova Y., Švorčík V., Lyutakov O. Pretreatment-Free Selective and Reproducible SERS-Based Detection of Heavy Metal Ions on DTPA Functionalized Plasmonic Platform. Sensors Actuators B Chem. 2017;253:830–838. doi: 10.1016/j.snb.2017.07.018. DOI
Li M., Cushing S.K., Wu N. Plasmon-Enhanced Optical Sensors: A Review. Analyst. 2015;140:386–406. doi: 10.1039/C4AN01079E. PubMed DOI PMC
Fateixa S., Raposo M., Nogueira H.I.S., Trindade T. A General Strategy to Prepare SERS Active Filter Membranes for Extraction and Detection of Pesticides in Water. Talanta. 2018;182:558–566. doi: 10.1016/j.talanta.2018.02.014. PubMed DOI
Zapata F., López-López M., García-Ruiz C. Detection and Identification of Explosives by Surface Enhanced Raman Scattering. Appl. Spectrosc. Rev. 2016;51:227–262. doi: 10.1080/05704928.2015.1118637. DOI
Akanny E., Bonhommé A., Bois L., Minot S., Bourgeois S., Bordes C., Bessueille F. Development and Comparison of Surface-Enhanced Raman Scattering Gold Substrates for In Situ Characterization of ‘Model’ Analytes in Organic and Aqueous Media. Chem. Afr. 2019 doi: 10.1007/s42250-019-00053-2. DOI
Yuan Y., Panwar N., Yap S.H.K., Wu Q., Zeng S., Xu J., Tjin S.C., Song J., Qu J., Yong K.-T. SERS-Based Ultrasensitive Sensing Platform: An Insight into Design and Practical Applications. Coord. Chem. Rev. 2017;337:1–33. doi: 10.1016/j.ccr.2017.02.006. DOI
Alvarez-Puebla R.A., Liz-Marzán L.M. Traps and Cages for Universal SERS Detection. Chem. Soc. Rev. 2011;41:43–51. doi: 10.1039/C1CS15155J. PubMed DOI
Xu L., Yin H., Ma W., Kuang H., Wang L., Xu C. Ultrasensitive SERS Detection of Mercury Based on the Assembled Gold Nanochains. Biosens. Bioelectron. 2015;67:472–476. doi: 10.1016/j.bios.2014.08.088. PubMed DOI
Senapati T., Senapati D., Singh A.K., Fan Z., Kanchanapally R., Ray P.C. Highly Selective SERS Probe for Hg(Ii) Detection Using Tryptophan-Protected Popcorn Shaped Gold Nanoparticles. Chem. Commun. 2011;47:10326. doi: 10.1039/c1cc13157e. PubMed DOI
Han D., Lim S.Y., Kim B.J., Piao L., Chung T.D. Mercury(Ii) Detection by SERS Based on a Single Gold Microshell. Chem. Commun. 2010;46:5587. doi: 10.1039/c0cc00895h. PubMed DOI
Zhang L., Chang H., Hirata A., Wu H., Xue Q.-K., Chen M. Nanoporous Gold Based Optical Sensor for Sub-Ppt Detection of Mercury Ions. ACS Nano. 2013;7:4595–4600. doi: 10.1021/nn4013737. PubMed DOI
Si S., Liang W., Sun Y., Huang J., Ma W., Liang Z., Bao Q., Jiang L. Facile Fabrication of High-Density Sub-1-Nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates. Adv. Funct. Mater. 2016;26:8137–8145. doi: 10.1002/adfm.201602337. DOI
Zhou Q., Kim T. Review of Microfluidic Approaches for Surface-Enhanced Raman Scattering. Sensors Actuators B Chem. 2016;227:504–514. doi: 10.1016/j.snb.2015.12.069. DOI
Guselnikova O., Postnikov P., Kalachyova Y., Kolska Z., Libansky M., Zima J., Svorcik V., Lyutakov O. Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating. ChemNanoMat. 2017;3:135–144. doi: 10.1002/cnma.201600284. DOI
Kalachyova Y., Mares D., Lyutakov O., Kostejn M., Lapcak L., Švorčík V. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response. J. Phys. Chem. C. 2015;119:9506–9512. doi: 10.1021/acs.jpcc.5b01793. DOI
Botasini S., Heijo G., Méndez E. Toward Decentralized Analysis of Mercury (II) in Real Samples. A Critical Review on Nanotechnology-Based Methodologies. Anal. Chim. Acta. 2013;800:1–11. doi: 10.1016/j.aca.2013.07.067. PubMed DOI
Kim H.N., Ren W.X., Kim J.S., Yoon J. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions. Chem. Soc. Rev. 2012;41:3210–3244. doi: 10.1039/C1CS15245A. PubMed DOI
Li L., Zhang Q., Ding Y., Cai X., Gu S., Cao Z. Application of l -Cysteine Capped Core–shell CdTe/ZnS Nanoparticles as a Fluorescence Probe for Cephalexin. Anal. Methods. 2014;6:2715–2721. doi: 10.1039/C4AY00094C. DOI
Ma Y., Jiang L., Mei Y., Song R., Tian D., Huang H. Colorimetric Sensing Strategy for Mercury(Ii) and Melamine Utilizing Cysteamine-Modified Gold Nanoparticles. Analyst. 2013;138:5338. doi: 10.1039/c3an00690e. PubMed DOI
Saikia D., Dutta P., Sarma N.S., Adhikary N.C. CdTe/ZnS Core/Shell Quantum Dot-Based Ultrasensitive PET Sensor for Selective Detection of Hg (II) in Aqueous Media. Sensors Actuators B Chem. 2016;230:149–156. doi: 10.1016/j.snb.2016.02.035. DOI
Wen G., Wen X., Choi M.M.F., Shuang S. Photoelectrochemical Sensor for Detecting Hg2+ Based on Exciton Trapping. Sensors Actuators B Chem. 2015;221:1449–1454. doi: 10.1016/j.snb.2015.07.103. DOI
Ke J., Li X., Zhao Q., Hou Y., Chen J. Ultrasensitive Quantum Dot Fluorescence Quenching Assay for Selective Detection of Mercury Ions in Drinking Water. Sci. Rep. 2015;4:5624. doi: 10.1038/srep05624. PubMed DOI PMC
Priyadarshini E., Pradhan N. Gold Nanoparticles as Efficient Sensors in Colorimetric Detection of Toxic Metal Ions: A Review. Sensors Actuators B Chem. 2017;238:888–902. doi: 10.1016/j.snb.2016.06.081. DOI
Escorihuela J., Marcelis A.T.M., Zuilhof H. Metal-Free Click Chemistry Reactions on Surfaces. Adv. Mater. Interfaces. 2015;2:1500135. doi: 10.1002/admi.201500135. DOI
Lowe A.B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis. Polym. Chem. 2010;1:17–36. doi: 10.1039/B9PY00216B. DOI
Bengamra M., Khlifi A., Ktari N., Mahouche-Chergui S., Carbonnier B., Fourati N., Kalfat R., Chehimi M.M. Silanized Aryl Layers through Thiol-Yne Photo-Click Reaction. Langmuir. 2015;31:10717–10724. doi: 10.1021/acs.langmuir.5b02540. PubMed DOI
Zalesskiy S.S., Shlapakov N.S., Ananikov V.P. Visible Light Mediated Metal-Free Thiol–yne Click Reaction. Chem. Sci. 2016;7:6740–6745. doi: 10.1039/C6SC02132H. PubMed DOI PMC
Filimonov V.D., Trusova M., Postnikov P., Krasnokutskaya E.A., Lee Y.M., Hwang H.Y., Kim H., Chi K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008;10:3961–3964. doi: 10.1021/ol8013528. PubMed DOI
Guselnikova O., Postnikov P., Chehimi M.M., Kalachyovaa Y., Svorcik V., Lyutakov O. Surface Plasmon-Polariton: A Novel Way To Initiate Azide–Alkyne Cycloaddition. Langmuir. 2019;35:2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI
Guselnikova O., Postnikov P., Elashnikov R., Trusova M., Kalachyova Y., Libansky M., Barek J., Kolska Z., Švorčík V., Lyutakov O. Surface Modification of Au and Ag Plasmonic Thin Films via Diazonium Chemistry: Evaluation of Structure and Properties. Colloids Surf. A Physicochem. Eng. Asp. 2017;516:274–285. doi: 10.1016/j.colsurfa.2016.12.040. DOI
Gam-Derouich S., Lamouri A., Redeuilh C., Decorse P., Maurel F., Carbonnier B., Beyazıt S., Yilmaz G., Yagci Y., Chehimi M.M. Diazonium Salt-Derived 4-(Dimethylamino)Phenyl Groups as Hydrogen Donors in Surface-Confined Radical Photopolymerization for Bioactive Poly(2-Hydroxyethyl Methacrylate) Grafts. Langmuir. 2012;28:8035–8045. doi: 10.1021/la300690d. PubMed DOI
Kalachyova Y., Erzina M., Postnikov P., Svorcik V., Lyutakov O. Flexible SERS Substrate for Portable Raman Analysis of Biosamples. Appl. Surf. Sci. 2018;458:95–99. doi: 10.1016/j.apsusc.2018.07.073. DOI
Guselnikova O., Kalachyova Y., Hrobonova K., Trusova M., Barek J., Postnikov P., Svorcik V., Lyutakov O. SERS Platform for Detection of Lipids and Disease Markers Prepared Using Modification of Plasmonic-Active Gold Gratings by Lipophilic Moieties. Sensors Actuators B Chem. 2018;265:182–192. doi: 10.1016/j.snb.2018.03.016. DOI
Guselnikova O., Postnikov P., Trelin A., Švorčík V., Lyutakov O. Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements. ACS Sesnors. 2019;4:1032–1039. doi: 10.1021/acssensors.9b00225. PubMed DOI
Ibrahim M., Haes H.E. Computational Spectroscopic Study of Copper, Cadmium, Lead and Zinc Interactions in the Environment. Int. J. Environ. Pollut. 2005;23:417. doi: 10.1504/IJEP.2005.007604. DOI
Sze Y.K., Davis A.R., Neville G.A. Raman and infrared studies of complexes of mercury(II) with cysteine, cysteine methyl ester and methionine. Inorg. Chem. 1975;14:1969–1974. doi: 10.1021/ic50150a045. DOI
Shindo H., Brown T.L. Infrared Spectra of Complexes of L-Cysteine and Related Compounds with Zinc(II), Cadmium(II), Mercury(II), and Lead(II)1. J. Am. Chem. Soc. 1965;87:1904–1908. doi: 10.1021/ja01087a013. PubMed DOI
United Nations Environment Programme Summary of the Assessment Report. Global Mercury Assessment. [(accessed on 6 May 2019)]; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/11517/UNEP_GlobalAtmosphericMercuryAssessment_May2009.pdf.
Human Exposure International Mercury Assessment. United Nations Environment Programme. [(accessed on 6 May 2019)]; Available online: https://blogs.iit.edu/global-leaders/files/2012/06/IMA-Assessment_Part-1.pdf.
Ahmadivand A., Gerislioglu B., Manickam P., Kaushik A., Bhansali S., Nair M., Pala N. Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors. ACS Sensors. 2017;2:1359–1368. doi: 10.1021/acssensors.7b00478. PubMed DOI