Pairing of homologous chromosomes in C. elegans meiosis requires DEB-1 - an orthologue of mammalian vinculin
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31068058
PubMed Central
PMC6527391
DOI
10.1080/19491034.2019.1602337
Knihovny.cz E-zdroje
- Klíčová slova
- DEB-1, LINC complex, chromosome pairing, prophase I, vinculin,
- MeSH
- Caenorhabditis elegans genetika MeSH
- chromozomy genetika MeSH
- meióza genetika MeSH
- párování chromozomů genetika MeSH
- vinkulin genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vinkulin MeSH
During meiosis, homologous chromosomes undergo a dramatic movement in order to correctly align. This is a critical meiotic event but the molecular properties of this 'chromosomal dance' still remainunclear. We identified DEB-1 - an orthologue of mammalian vinculin - as a new component of the mechanistic modules responsible for attaching the chromosomes to the nuclear envelope as apart of the LINC complex. In early meiotic nuclei of C. elegans, DEB-1 is localized to the nuclear periphery and alongside the synaptonemal complex of paired homologues. Upon DEB-1 depletion, chromosomes attached to SUN-1 foci remain highly motile until late pachytene. Although the initiation of homologue pairing started normally, irregularities in the formation of the synaptonemal complex occur, and these results in meiotic defects such as increased number of univalents at diakinesis and high embryonic lethality. Our data identify DEB-1 as a new player regulating chromosome dynamics and pairing during meiotic prophase I.
Zobrazit více v PubMed
Page SL, Hawley RS.. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol. 2004;20:525–558. PubMed
MacQueen AJ, Phillips CM, Bhalla N, et al. Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell. 2005;123(6):1037–1050. PubMed PMC
Sato A, Isaac B, Phillips CM, et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell. 2009;139(5):907–919. PubMed PMC
Penkner A, Tang L, Novatchkova M, et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev Cell. 2007;12(6):873–885. PubMed
Hayashi M, Mlynarczyk-Evans S, Villeneuve AM. The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans meiosis. Genetics. 2010;186(1):45–58. PubMed PMC
Phillips CM, Wong C, Bhalla N, et al. HIM–8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell. 2005;123:1051–1063. PubMed PMC
Phillips CM, Dernburg AF. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev Cell. 2006;11:817–829. PubMed
Woglar A, Jantsch V. Chromosome movement in meiosis I prophase of Caenorhabditis elegans. Chromosoma. 2014;123(1–2):15–24. PubMed PMC
Wynne DJ, Rog O, Carlton PM, et al. Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis. J Cell Biol. 2012;196(1):47–64. PubMed PMC
Hirsh D, Oppenheim D, Klass M. Development of the reproductive system of Caenorhabditis elegans. Dev Biol. 1976;49(1):200–219. PubMed
Bakolitsa C, Cohen DM, Bankston LA, et al. Structural basis for vinculin activation at sites of cell adhesion. Nature. 2004;430(6999):583–586. PubMed
Winkler J, Lunsdorf H, Jockusch BM. The ultrastructure of chicken gizzard vinculin as visualized by high-resolution electron microscopy. J Struct Biol. 1996;116(2):270–277. PubMed
Geiger B, Volk T, Volberg T. Molecular heterogeneity of adherens junctions. J Cell Biol. 1985;101(4):1523–1531. PubMed PMC
Koteliansky VE, Gneushev GN. Vinculin localization in cardiac muscle. FEBS Lett. 1983;159(1–2):158–160. PubMed
Terracio L, Simpson DG, Hilenski L, et al. Distribution of vinculin in the Z-disk of striated muscle: analysis by laser scanning confocal microscopy. J Cell Physiol. 1990;145(1):78–87. PubMed
Samarel AM. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol. 2005;289(6):H2291–301. PubMed
Peng X, Nelson ES, Maiers JL, et al. New insights into vinculin function and regulation. Int Rev Cell Mol Biol. 2011;287:191–231. PubMed PMC
Barstead RJ, Waterston RH. The basal component of the nematode dense-body is vinculin. J Biol Chem. 1989;264(17):10177–10185. PubMed
Rogalski TM, Mullen GP, Gilbert MM, et al. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol. 2000;150(1):253–264. PubMed PMC
Francis GR, Waterston RH. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol. 1985;101(4):1532–1549. PubMed PMC
Ono K, Yu R, Ono S. Structural components of the nonstriated contractile apparatuses in the Caenorhabditis elegans gonadal myoepithelial sheath and their essential roles for ovulation. Dev Dyn. 2007;236(4):1093–1105. PubMed PMC
Iwasaki K, McCarter J, Francis R, et al. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J Cell Biol. 1996;134(3):699–714. PubMed PMC
McCarter J, Bartlett B, Dang T, et al. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol. 1999;205(1):111–128. PubMed
McCarter J, Bartlett B, Dang T, et al. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol. 1997;181(2):121–143. PubMed
Williams BD, Waterston RH. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol. 1994;124(4):475–490. PubMed PMC
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94. PubMed PMC
Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998;395(6705):854. PubMed
Martinez-Perez E, Villeneuve AM. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 2005;19(22):2727–2743. PubMed PMC
MacQueen AJ, Colaiácovo MP, McDonald K, et al. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 2002;16(18):2428–2442. PubMed PMC
Penkner AM, Fridkin A, Gloggnitzer J, et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell. 2009;139(5):920–933. PubMed
Labella S, Woglar A, Jantsch V, et al. Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing. Dev Cell. 2011;21(5):948–958. PubMed
Matsuura R, Ashikawa T, Nozaki Y, et al. LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans. Mol Biol Cell. 2016;27(5):799–811. PubMed PMC
MacQueen AJ, Villeneuve AM. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev. 2001;15(13):1674–1687. PubMed PMC
Dernburg AF, McDonald K, Moulder G, et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998;94(3):387–398. PubMed
Philimonenko AA, Janacek J, Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct Biol. 2000;132(3):201–210. PubMed
Barstead RJ, Waterston RH. Vinculin is essential for muscle function in the nematode. J Cell Biol. 1991;114(4):715–724. PubMed PMC
Kumsta C, Hansen M. C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One. 2012;7(5):e35428. PubMed PMC
Kalocsay M, Hiller NJ, Jentsch S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell. 2009;33(3):335–343. PubMed
Cohen TV, Stewart CL. Fraying at the edge mouse models of diseases resulting from defects at the nuclear periphery. Curr Top Dev Biol. 2008;84:351–384. PubMed
Dahl KN, Engler AJ, Pajerowski JD, et al. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J. 2005;89(4):2855–2864. PubMed PMC
Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73. PubMed PMC
Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng. 2007;9:1–34. PubMed
Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82. PubMed
Conrad MN, Lee C-Y, Wilkerson JL, et al. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2007;104(21):8863–8868. PubMed PMC
Lin X, Qadota H, Moerman DG, et al. C. elegans PAT-6/actopaxin plays a critical role in the assembly of integrin adhesion complexes in vivo. Curr Biol. 2003;13(11):922–932. PubMed
Ding X, Xu R, Yu J, et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell. 2007;12(6):863–872. PubMed
Daryabeigi A, Woglar A, Baudrimont A, et al. Nuclear envelope retention of LINC complexes is promoted by SUN-1 oligomerization in the caenorhabditis elegans germ line. Genetics. 2016;203(2):733–748. PubMed PMC
Goodyer W, Kaitna S, Couteau F, et al. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev Cell. 2008;14(2):263–274. PubMed
Colaiácovo MP, MacQueen AJ, Martinez-Perez E, et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell. 2003;5(3):463–474. PubMed
Couteau F, Nabeshima K, Villeneuve A, et al. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr Biol. 2004;14(7):585–592. PubMed
Yokoo R, Zawadzki KA, Nabeshima K, et al. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012;149(1):75–87. PubMed PMC
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol. 2015;208(1):11–22. PubMed PMC
Koszul R, Kleckner N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 2009;19(12):716–724. PubMed PMC
Kaverina I, Rottner K, Small JV. Targeting, capture, and stabilization of microtubules at early focal adhesions. J Cell Biol. 1998;142(1):181–190. PubMed PMC
Rodriguez OC, Schaefer AW, Mandato CA, et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol. 2003;5(7):599–609. PubMed
Schober JM, Kwon G, Jayne D, et al. The microtubule-associated protein EB1 maintains cell polarity through activation of protein kinase C. Biochem Biophys Res Commun. 2012;417(1):67–72. PubMed PMC
Gerton JL, Hawley RS. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet. 2005;6(6):477–487. PubMed
Bhalla N, Dernburg AF. Prelude to a division. Annu Rev Cell Dev Biol. 2008;24:397–424. PubMed PMC
Bozza CG, Pawlowski WP. The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res. 2008;120(3–4):313–319. PubMed
Stewart MN, Dawson DS. Changing partners: moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet. 2008;24(11):564–573. PubMed PMC
Loidl J. The initiation of meiotic chromosome pairing: the cytological view. Genome. 1990;33(6):759–778. PubMed
Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. PubMed
Nabeshima K. Collaborative homologous pairing during C. elegans meiosis. Worm. 2012;1(2):116–120. PubMed PMC
Tsai JH, McKee BD. Homologous pairing and the role of pairing centers in meiosis. J Cell Sci. 2011;124(Pt 12):1955–1963. PubMed
Ziegler WH, Liddington RC, Critchley DR. The structure and regulation of vinculin. Trends Cell Biol. 2006;16(9):453–460. PubMed
Chen H, Cohen DM, Choudhury DM, et al. Spatial distribution and functional significance of activated vinculin in living cells. J Cell Biol. 2005;169(3):459–470. PubMed PMC
Izard T, Vonrhein C. Structural basis for amplifying vinculin activation by talin. J Biol Chem. 2004;279(26):27667–27678. PubMed
Izard T, Evans G, Borgon RA, et al. Vinculin activation by talin through helical bundle conversion. Nature. 2004;427(6970):171–175. PubMed
Chorev DS, Volberg T, Livne A, et al. Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Sci Rep. 2018;8(1):2693. PubMed PMC
Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001;3(5):466–472. PubMed
Hiraoka Y, Dernburg AF. The SUN rises on meiotic chromosome dynamics. Dev Cell. 2009;17(5):598–605. PubMed
Harper NC, Rillo R, Jover-Gil S, et al. Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Dev Cell. 2011;21(5):934–947. PubMed PMC
Fridkin A, Mills E, Margalit A, et al. Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci U S A. 2004;101(18):6987–6992. PubMed PMC
Jaspersen SL, Hawley RS. Meiotic pairing as a polo match. Dev Cell. 2011;21(5):805–806. PubMed
Hieda M. Implications for diverse functions of the LINC complexes based on the structure. Cells. 2017;6:3. PubMed PMC
Janin A, Bauer D, Ratti F, et al. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis. 2017;12(1):147. PubMed PMC