Prognostic Significance of Serum Free Amino Acids in Head and Neck Cancers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31075822
PubMed Central
PMC6562773
DOI
10.3390/cells8050428
PII: cells8050428
Knihovny.cz E-zdroje
- Klíčová slova
- amino acids, blood biomarkers, colony forming assay, head and neck cancer, metabolism, prognosis,
- MeSH
- aminokyseliny krev MeSH
- Kaplanův-Meierův odhad MeSH
- lidé středního věku MeSH
- lidé MeSH
- multivariační analýza MeSH
- nádory hlavy a krku krev MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- testy nádorových kmenových buněk MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
Despite distinctive advances in the field of head and neck squamous cell cancer (HNSCC) biomarker discovery, the spectrum of clinically useful prognostic serum biomarkers is limited. As metabolic activities in highly proliferative transformed cells are fundamentally different from those in non-transformed cells, specific shifts in concentration of different metabolites may serve as diagnostic or prognostic markers. Blood amino acids have been identified as promising biomarkers in different cancers before, but little is known about this field in HNSCC. Blood amino acid profiles of 140 HNSCC patients were examined using high-performance liquid chromatography. Cox proportional hazards regression model was used to assess the prognostic value of amino acid concentrations in serum. Colony forming assay was used to identify the effect of amino acids that were significant in Cox proportional hazards regression models on colony forming ability of FaDu and Detroit 562 cell lines. In the multivariable Cox regression model for overall survival (OS), palliative treatment was associated with an unfavourable prognosis while high serum levels of methionine have had a positive prognostic impact. In the relapse-free survival (RFS) multivariable model, methionine was similarly identified as a positive prognostic factor, along with tumor localization in the oropharynx. Oral cavity localization and primary radio(chemo)therapy treatment strategy have been linked to poorer RFS. 1mM serine was shown to support the forming of colonies in both tested HNSCC cell lines. Effect of methionine was exactly the opposite.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 252 50 Vestec Czech Republic
Department of Chemistry and Biochemistry Mendel University Zemedelska 1 613 00 Brno Czech Republic
Zobrazit více v PubMed
Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Porporato P.E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5 doi: 10.1038/oncsis.2016.3. PubMed DOI PMC
Goldson T.M., Han Y., Knight K.B., Weiss H.L., Resto V.A. Clinicopathological predictors of lymphatic metastasis in HNSCC: Implications for molecular mechanisms of metastatic disease. J. Exp Ther. Oncol. 2010;8:211–221. PubMed PMC
Polanska H., Raudenska M., Gumulec J., Sztalmachova M., Adam V., Kizek R., Masarik M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral. Oncol. 2014;50:168–177. doi: 10.1016/j.oraloncology.2013.12.008. PubMed DOI
Ananieva E.A., Wilkinson A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:64–70. doi: 10.1097/MCO.0000000000000430. PubMed DOI PMC
Li X., Wenes M., Romero P., Huang S.C.-C., Fendt S.-M., Ho P.-C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 2019 doi: 10.1038/s41571-019-0203-7. PubMed DOI
Vučetić M., Cormerais Y., Parks S.K., Pouysségur J. The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Front. Oncol. 2017;7:319. doi: 10.3389/fonc.2017.00319. PubMed DOI PMC
Klupczynska A., Derezinski P., Dyszkiewicz W., Pawlak K., Kasprzyk M., Kokot Z.J. Evaluation of serum amino acid profiles’ utility in non-small cell lung cancer detection in Polish population. Lung Cancer. 2016;100:71–76. doi: 10.1016/j.lungcan.2016.04.008. PubMed DOI
Gu Y., Chen T., Fu S., Sun X., Wang L., Wang J., Lu Y., Ding S., Ruan G., Teng L., et al. Perioperative dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med. 2015;13:35. doi: 10.1186/s12967-015-0408-1. PubMed DOI PMC
Plewa S., Horala A., Derezinski P., Klupczynska A., Nowak-Markwitz E., Matysiak J., Kokot Z.J. Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis. Int. J. Mol. Sci. 2017;18:2727. doi: 10.3390/ijms18122727. PubMed DOI PMC
Zhang T., Wu X., Yin M., Fan L., Zhang H., Zhao F., Zhang W., Ke C., Zhang G., Hou Y., et al. Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clin. Chim. Acta. 2012;413:861–868. doi: 10.1016/j.cca.2012.01.026. PubMed DOI
Wirtz E.D., Hoshino D., Maldonado A.T., Tyson D.R., Weaver A.M. Response of head and neck squamous cell carcinoma cells carrying PIK3CA mutations to selected targeted therapies. JAMA Otolaryngol Head Neck Surg. 2015;141:543–549. doi: 10.1001/jamaoto.2015.0471. PubMed DOI PMC
Lausen B., Schumacher M. Maximally Selected Rank Statistics. Biometrics. 1992;48:73–85. doi: 10.2307/2532740. DOI
Pavlova N.N., Thompson C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006. PubMed DOI PMC
Scioscia K.A., Snyderman C.H., Wagner R. Altered serum amino acid profiles in head and neck cancer. Nutr. Cancer. 1998;30:144–147. doi: 10.1080/01635589809514654. PubMed DOI
Toyoda M., Kaira K., Ohshima Y., Ishioka N.S., Shino M., Sakakura K., Takayasu Y., Takahashi K., Tominaga H., Oriuchi N., et al. Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer. Br. J. Cancer. 2014;110:2506–2513. doi: 10.1038/bjc.2014.178. PubMed DOI PMC
Ruth M.R., Field C.J. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 2013;4:27. doi: 10.1186/2049-1891-4-27. PubMed DOI PMC
Curis E., Nicolis I., Moinard C., Osowska S., Zerrouk N., Bénazeth S., Cynober L. Almost all about citrulline in mammals. Amino Acids. 2005;29:177. doi: 10.1007/s00726-005-0235-4. PubMed DOI
Crenn P., Messing B., Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008;27:328–339. doi: 10.1016/j.clnu.2008.02.005. PubMed DOI
van Vliet M.J., Tissing W.J., Rings E.H., Koetse H.A., Stellaard F., Kamps W.A., de Bont E.S. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer. 2009;53:1188–1194. doi: 10.1002/pbc.22210. PubMed DOI
van Monsjou H.S., Wreesmann V.B., van den Brekel M.W., Balm A.J. Head and neck squamous cell carcinoma in young patients. Oral. Oncol. 2013;49:1097–1102. doi: 10.1016/j.oraloncology.2013.09.001. PubMed DOI
Du E., Mazul A.L., Farquhar D., Brennan P., Anantharaman D., Abedi-Ardekani B., Weissler M.C., Hayes D.N., Olshan A.F., Zevallos J.P. Long-term Survival in Head and Neck Cancer: Impact of Site, Stage, Smoking, and Human Papillomavirus Status. The Laryngoscope. 2019;0 doi: 10.1002/lary.27807. PubMed DOI PMC
Hoffman R.M. Altered methionine metabolism and transmethylation in cancer. Anticancer Res. 1985;5:1–30. PubMed
Kune G., Watson L. Colorectal cancer protective effects and the dietary micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and lycopene. Nutr. Cancer. 2006;56:11–21. doi: 10.1207/s15327914nc5601_3. PubMed DOI
Giovannucci E., Stampfer M.J., Colditz G.A., Rimm E.B., Trichopoulos D., Rosner B.A., Speizer F.E., Willett W.C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl. Cancer Inst. 1993;85:875–884. doi: 10.1093/jnci/85.11.875. PubMed DOI
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239–259. doi: 10.2217/epi.09.33. PubMed DOI PMC
Hoffman R.M. Is DNA methylation the new guardian of the genome? Mol. Cytogenet. 2017;10:11. doi: 10.1186/s13039-017-0314-8. PubMed DOI PMC
Cavuoto P., Fenech M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012;38:726–736. doi: 10.1016/j.ctrv.2012.01.004. PubMed DOI
Lien E.C., Ghisolfi L., Geck R.C., Asara J.M., Toker A. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aao6604. PubMed DOI PMC
Lui V.W.Y., Hedberg M.L., Li H., Vangara B.S., Pendleton K., Zeng Y., Lu Y., Zhang Q., Du Y., Gilbert B.R., et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3:761–769. doi: 10.1158/2159-8290.CD-13-0103. PubMed DOI PMC
Yonezawa K., Nishiumi S., Kitamoto-Matsuda J., Fujita T., Morimoto K., Yamashita D., Saito M., Otsuki N., Irino Y., Shinohara M., et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013;10:233–238. PubMed
Munasinghe L.L., Robinson J.L., Harding S.V., Brunton J.A., Bertolo R.F. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets. J. Nutr. 2017;147:202–210. doi: 10.3945/jn.116.236786. PubMed DOI
Faure M., Moënnoz D., Montigon F., Mettraux C., Breuillé D., Ballèvre O. Dietary Threonine Restriction Specifically Reduces Intestinal Mucin Synthesis in Rats. J. Nutr. 2005;135:486–491. doi: 10.1093/jn/135.3.486. PubMed DOI
Holmes A.J., Chew Y.V., Colakoglu F., Cliff J.B., Klaassens E., Read M.N., Solon-Biet S.M., McMahon A.C., Cogger V.C., Ruohonen K., et al. Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metab. 2017;25:140–151. doi: 10.1016/j.cmet.2016.10.021. PubMed DOI
Engen P.A., Green S.J., Voigt R.M., Forsyth C.B., Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015;37:223–236. PubMed PMC
Touchefeu Y., Montassier E., Nieman K., Gastinne T., Potel G., Bruley des Varannes S., Le Vacon F., de La Cochetiere M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharm. Ther. 2014;40:409–421. doi: 10.1111/apt.12878. PubMed DOI
Zitvogel L., Galluzzi L., Viaud S., Vétizou M., Daillère R., Merad M., Kroemer G. Cancer and the gut microbiota: An unexpected link. Sci. Transl. Med. 2015;7:271ps1. doi: 10.1126/scitranslmed.3010473. PubMed DOI PMC
Fukutake N., Ueno M., Hiraoka N., Shimada K., Shiraishi K., Saruki N., Ito T., Yamakado M., Ono N., Imaizumi A., et al. A Novel Multivariate Index for Pancreatic Cancer Detection Based On the Plasma Free Amino Acid Profile. PLoS ONE. 2015;10:e0132223. doi: 10.1371/journal.pone.0132223. PubMed DOI PMC
Mattaini K.R., Sullivan M.R., Vander Heiden M.G. The importance of serine metabolism in cancer. J. Cell Biol. 2016;214:249–257. doi: 10.1083/jcb.201604085. PubMed DOI PMC
Labuschagne C.F., van den Broek N.J.F., Mackay G.M., Vousden K.H., Maddocks O.D.K. Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Rep. 2014;7:1248–1258. doi: 10.1016/j.celrep.2014.04.045. PubMed DOI
de Arruda Leme I., Portari G.V., Padovan G.J., Rosa F.T., de Mello-Filho F.V., Marchini J.S. Amino acids in squamous cell carcinomas and adjacent normal tissues from patients with larynx and oral cavity lesions. Clinics. 2012;67:1225–1227. doi: 10.6061/clinics/2012(10)17. PubMed DOI PMC
Gao X., Lee K., Reid M.A., Sanderson S.M., Qiu C., Li S., Liu J., Locasale J.W. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep. 2018;22:3507–3520. doi: 10.1016/j.celrep.2018.03.017. PubMed DOI PMC
LeBleu V.S., O’Connell J.T., Gonzalez Herrera K.N., Wikman H., Pantel K., Haigis M.C., de Carvalho F.M., Damascena A., Domingos Chinen L.T., Rocha R.M., et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014;16:992–1003. doi: 10.1038/ncb3039. PubMed DOI PMC
Viale A., Pettazzoni P., Lyssiotis C.A., Ying H., Sanchez N., Marchesini M., Carugo A., Green T., Seth S., Giuliani V., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–632. doi: 10.1038/nature13611. PubMed DOI PMC
Poschke I., Mao Y., Kiessling R., de Boniface J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J. Transl. Med. 2013;11:290. doi: 10.1186/1479-5876-11-290. PubMed DOI PMC
Miyagi Y., Higashiyama M., Gochi A., Akaike M., Ishikawa T., Miura T., Saruki N., Bando E., Kimura H., Imamura F., et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE. 2011;6:e24143. doi: 10.1371/journal.pone.0024143. PubMed DOI PMC
Bi X., Henry C.J. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr. Diabetes. 2017;7:e249. doi: 10.1038/nutd.2016.55. PubMed DOI PMC