Prognostic Significance of Serum Free Amino Acids in Head and Neck Cancers

. 2019 May 09 ; 8 (5) : . [epub] 20190509

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31075822

Despite distinctive advances in the field of head and neck squamous cell cancer (HNSCC) biomarker discovery, the spectrum of clinically useful prognostic serum biomarkers is limited. As metabolic activities in highly proliferative transformed cells are fundamentally different from those in non-transformed cells, specific shifts in concentration of different metabolites may serve as diagnostic or prognostic markers. Blood amino acids have been identified as promising biomarkers in different cancers before, but little is known about this field in HNSCC. Blood amino acid profiles of 140 HNSCC patients were examined using high-performance liquid chromatography. Cox proportional hazards regression model was used to assess the prognostic value of amino acid concentrations in serum. Colony forming assay was used to identify the effect of amino acids that were significant in Cox proportional hazards regression models on colony forming ability of FaDu and Detroit 562 cell lines. In the multivariable Cox regression model for overall survival (OS), palliative treatment was associated with an unfavourable prognosis while high serum levels of methionine have had a positive prognostic impact. In the relapse-free survival (RFS) multivariable model, methionine was similarly identified as a positive prognostic factor, along with tumor localization in the oropharynx. Oral cavity localization and primary radio(chemo)therapy treatment strategy have been linked to poorer RFS. 1mM serine was shown to support the forming of colonies in both tested HNSCC cell lines. Effect of methionine was exactly the opposite.

Zobrazit více v PubMed

Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Porporato P.E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5 doi: 10.1038/oncsis.2016.3. PubMed DOI PMC

Goldson T.M., Han Y., Knight K.B., Weiss H.L., Resto V.A. Clinicopathological predictors of lymphatic metastasis in HNSCC: Implications for molecular mechanisms of metastatic disease. J. Exp Ther. Oncol. 2010;8:211–221. PubMed PMC

Polanska H., Raudenska M., Gumulec J., Sztalmachova M., Adam V., Kizek R., Masarik M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral. Oncol. 2014;50:168–177. doi: 10.1016/j.oraloncology.2013.12.008. PubMed DOI

Ananieva E.A., Wilkinson A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:64–70. doi: 10.1097/MCO.0000000000000430. PubMed DOI PMC

Li X., Wenes M., Romero P., Huang S.C.-C., Fendt S.-M., Ho P.-C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 2019 doi: 10.1038/s41571-019-0203-7. PubMed DOI

Vučetić M., Cormerais Y., Parks S.K., Pouysségur J. The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Front. Oncol. 2017;7:319. doi: 10.3389/fonc.2017.00319. PubMed DOI PMC

Klupczynska A., Derezinski P., Dyszkiewicz W., Pawlak K., Kasprzyk M., Kokot Z.J. Evaluation of serum amino acid profiles’ utility in non-small cell lung cancer detection in Polish population. Lung Cancer. 2016;100:71–76. doi: 10.1016/j.lungcan.2016.04.008. PubMed DOI

Gu Y., Chen T., Fu S., Sun X., Wang L., Wang J., Lu Y., Ding S., Ruan G., Teng L., et al. Perioperative dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med. 2015;13:35. doi: 10.1186/s12967-015-0408-1. PubMed DOI PMC

Plewa S., Horala A., Derezinski P., Klupczynska A., Nowak-Markwitz E., Matysiak J., Kokot Z.J. Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis. Int. J. Mol. Sci. 2017;18:2727. doi: 10.3390/ijms18122727. PubMed DOI PMC

Zhang T., Wu X., Yin M., Fan L., Zhang H., Zhao F., Zhang W., Ke C., Zhang G., Hou Y., et al. Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clin. Chim. Acta. 2012;413:861–868. doi: 10.1016/j.cca.2012.01.026. PubMed DOI

Wirtz E.D., Hoshino D., Maldonado A.T., Tyson D.R., Weaver A.M. Response of head and neck squamous cell carcinoma cells carrying PIK3CA mutations to selected targeted therapies. JAMA Otolaryngol Head Neck Surg. 2015;141:543–549. doi: 10.1001/jamaoto.2015.0471. PubMed DOI PMC

Lausen B., Schumacher M. Maximally Selected Rank Statistics. Biometrics. 1992;48:73–85. doi: 10.2307/2532740. DOI

Pavlova N.N., Thompson C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006. PubMed DOI PMC

Scioscia K.A., Snyderman C.H., Wagner R. Altered serum amino acid profiles in head and neck cancer. Nutr. Cancer. 1998;30:144–147. doi: 10.1080/01635589809514654. PubMed DOI

Toyoda M., Kaira K., Ohshima Y., Ishioka N.S., Shino M., Sakakura K., Takayasu Y., Takahashi K., Tominaga H., Oriuchi N., et al. Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer. Br. J. Cancer. 2014;110:2506–2513. doi: 10.1038/bjc.2014.178. PubMed DOI PMC

Ruth M.R., Field C.J. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 2013;4:27. doi: 10.1186/2049-1891-4-27. PubMed DOI PMC

Curis E., Nicolis I., Moinard C., Osowska S., Zerrouk N., Bénazeth S., Cynober L. Almost all about citrulline in mammals. Amino Acids. 2005;29:177. doi: 10.1007/s00726-005-0235-4. PubMed DOI

Crenn P., Messing B., Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008;27:328–339. doi: 10.1016/j.clnu.2008.02.005. PubMed DOI

van Vliet M.J., Tissing W.J., Rings E.H., Koetse H.A., Stellaard F., Kamps W.A., de Bont E.S. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer. 2009;53:1188–1194. doi: 10.1002/pbc.22210. PubMed DOI

van Monsjou H.S., Wreesmann V.B., van den Brekel M.W., Balm A.J. Head and neck squamous cell carcinoma in young patients. Oral. Oncol. 2013;49:1097–1102. doi: 10.1016/j.oraloncology.2013.09.001. PubMed DOI

Du E., Mazul A.L., Farquhar D., Brennan P., Anantharaman D., Abedi-Ardekani B., Weissler M.C., Hayes D.N., Olshan A.F., Zevallos J.P. Long-term Survival in Head and Neck Cancer: Impact of Site, Stage, Smoking, and Human Papillomavirus Status. The Laryngoscope. 2019;0 doi: 10.1002/lary.27807. PubMed DOI PMC

Hoffman R.M. Altered methionine metabolism and transmethylation in cancer. Anticancer Res. 1985;5:1–30. PubMed

Kune G., Watson L. Colorectal cancer protective effects and the dietary micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and lycopene. Nutr. Cancer. 2006;56:11–21. doi: 10.1207/s15327914nc5601_3. PubMed DOI

Giovannucci E., Stampfer M.J., Colditz G.A., Rimm E.B., Trichopoulos D., Rosner B.A., Speizer F.E., Willett W.C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl. Cancer Inst. 1993;85:875–884. doi: 10.1093/jnci/85.11.875. PubMed DOI

Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239–259. doi: 10.2217/epi.09.33. PubMed DOI PMC

Hoffman R.M. Is DNA methylation the new guardian of the genome? Mol. Cytogenet. 2017;10:11. doi: 10.1186/s13039-017-0314-8. PubMed DOI PMC

Cavuoto P., Fenech M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012;38:726–736. doi: 10.1016/j.ctrv.2012.01.004. PubMed DOI

Lien E.C., Ghisolfi L., Geck R.C., Asara J.M., Toker A. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aao6604. PubMed DOI PMC

Lui V.W.Y., Hedberg M.L., Li H., Vangara B.S., Pendleton K., Zeng Y., Lu Y., Zhang Q., Du Y., Gilbert B.R., et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3:761–769. doi: 10.1158/2159-8290.CD-13-0103. PubMed DOI PMC

Yonezawa K., Nishiumi S., Kitamoto-Matsuda J., Fujita T., Morimoto K., Yamashita D., Saito M., Otsuki N., Irino Y., Shinohara M., et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013;10:233–238. PubMed

Munasinghe L.L., Robinson J.L., Harding S.V., Brunton J.A., Bertolo R.F. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets. J. Nutr. 2017;147:202–210. doi: 10.3945/jn.116.236786. PubMed DOI

Faure M., Moënnoz D., Montigon F., Mettraux C., Breuillé D., Ballèvre O. Dietary Threonine Restriction Specifically Reduces Intestinal Mucin Synthesis in Rats. J. Nutr. 2005;135:486–491. doi: 10.1093/jn/135.3.486. PubMed DOI

Holmes A.J., Chew Y.V., Colakoglu F., Cliff J.B., Klaassens E., Read M.N., Solon-Biet S.M., McMahon A.C., Cogger V.C., Ruohonen K., et al. Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metab. 2017;25:140–151. doi: 10.1016/j.cmet.2016.10.021. PubMed DOI

Engen P.A., Green S.J., Voigt R.M., Forsyth C.B., Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015;37:223–236. PubMed PMC

Touchefeu Y., Montassier E., Nieman K., Gastinne T., Potel G., Bruley des Varannes S., Le Vacon F., de La Cochetiere M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharm. Ther. 2014;40:409–421. doi: 10.1111/apt.12878. PubMed DOI

Zitvogel L., Galluzzi L., Viaud S., Vétizou M., Daillère R., Merad M., Kroemer G. Cancer and the gut microbiota: An unexpected link. Sci. Transl. Med. 2015;7:271ps1. doi: 10.1126/scitranslmed.3010473. PubMed DOI PMC

Fukutake N., Ueno M., Hiraoka N., Shimada K., Shiraishi K., Saruki N., Ito T., Yamakado M., Ono N., Imaizumi A., et al. A Novel Multivariate Index for Pancreatic Cancer Detection Based On the Plasma Free Amino Acid Profile. PLoS ONE. 2015;10:e0132223. doi: 10.1371/journal.pone.0132223. PubMed DOI PMC

Mattaini K.R., Sullivan M.R., Vander Heiden M.G. The importance of serine metabolism in cancer. J. Cell Biol. 2016;214:249–257. doi: 10.1083/jcb.201604085. PubMed DOI PMC

Labuschagne C.F., van den Broek N.J.F., Mackay G.M., Vousden K.H., Maddocks O.D.K. Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Rep. 2014;7:1248–1258. doi: 10.1016/j.celrep.2014.04.045. PubMed DOI

de Arruda Leme I., Portari G.V., Padovan G.J., Rosa F.T., de Mello-Filho F.V., Marchini J.S. Amino acids in squamous cell carcinomas and adjacent normal tissues from patients with larynx and oral cavity lesions. Clinics. 2012;67:1225–1227. doi: 10.6061/clinics/2012(10)17. PubMed DOI PMC

Gao X., Lee K., Reid M.A., Sanderson S.M., Qiu C., Li S., Liu J., Locasale J.W. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep. 2018;22:3507–3520. doi: 10.1016/j.celrep.2018.03.017. PubMed DOI PMC

LeBleu V.S., O’Connell J.T., Gonzalez Herrera K.N., Wikman H., Pantel K., Haigis M.C., de Carvalho F.M., Damascena A., Domingos Chinen L.T., Rocha R.M., et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 2014;16:992–1003. doi: 10.1038/ncb3039. PubMed DOI PMC

Viale A., Pettazzoni P., Lyssiotis C.A., Ying H., Sanchez N., Marchesini M., Carugo A., Green T., Seth S., Giuliani V., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–632. doi: 10.1038/nature13611. PubMed DOI PMC

Poschke I., Mao Y., Kiessling R., de Boniface J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J. Transl. Med. 2013;11:290. doi: 10.1186/1479-5876-11-290. PubMed DOI PMC

Miyagi Y., Higashiyama M., Gochi A., Akaike M., Ishikawa T., Miura T., Saruki N., Bando E., Kimura H., Imamura F., et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE. 2011;6:e24143. doi: 10.1371/journal.pone.0024143. PubMed DOI PMC

Bi X., Henry C.J. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr. Diabetes. 2017;7:e249. doi: 10.1038/nutd.2016.55. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...