M-O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
682275
European Research Council - International
LTAUSA17026
Ministerstvo Školství, Mládeže a Tělovýchovy
CTQ2015- 70795-P
Ministerio de Industria, Energía y Turismo
2017SGR01378
Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
18-13093S
Grantová Agentura České Republiky
PubMed
31083766
PubMed Central
PMC6618258
DOI
10.1002/anie.201904546
Knihovny.cz E-zdroje
- Klíčová slova
- C−H activation, cobalt-oxo complexes, helium tagging, ion spectroscopy, iron-oxo complexes, oxo wall,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Terminal oxo complexes of late transition metals are frequently proposed reactive intermediates. However, they are scarcely known beyond Group 8. Using mass spectrometry, we prepared and characterized two such complexes: [(N4Py)CoIII (O)]+ (1) and [(N4Py)CoIV (O)]2+ (2). Infrared photodissociation spectroscopy revealed that the Co-O bond in 1 is rather strong, in accordance with its lack of chemical reactivity. On the contrary, 2 has a very weak Co-O bond characterized by a stretching frequency of ≤659 cm-1 . Accordingly, 2 can abstract hydrogen atoms from non-activated secondary alkanes. Previously, this reactivity has only been observed in the gas phase for small, coordinatively unsaturated metal complexes. Multireference ab-initio calculations suggest that 2, formally a cobalt(IV)-oxo complex, is best described as cobalt(III)-oxyl. Our results provide important data on changes to metal-oxo bonding behind the oxo wall and show that cobalt-oxo complexes are promising targets for developing highly active C-H oxidation catalysts.
Zobrazit více v PubMed
Ballhausen C. J., Gray H. B., Inorg. Chem. 1962, 1, 111–122.
Winkler J. R., Gray H. B., Struct. Bonding (Berlin) 2012, 142, 17–28.
Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed. (Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Press, New York, 2005.
Guengerich F. P., ACS Catal. 2018, 8, 10964–10976. PubMed PMC
Huang X., Groves J. T., Chem. Rev. 2018, 118, 2491–2553. PubMed PMC
Abu-Omar M. M., Loaiza A., Hontzeas N., Chem. Rev. 2005, 105, 2227–2252. PubMed
Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehner N., Neese F., Skulan A. J., Yang Y.-S., Zhou J., Chem. Rev. 2000, 100, 235–349. PubMed
Hohenberger J., Ray K., Meyer K., Nat. Commun. 2012, 3, 720. PubMed
Lindhorst A. C., Haslinger S., Kühn F. E., Chem. Commun. 2015, 51, 17193–17212. PubMed
“Biomimetic High-Valent Mononuclear Nonheme Iron-Oxo Chemistry”: Klein J. E. M. N., L. Que, Jr. in Encyclopedia of Inorganic and Bioinorganic Chemistry (Ed.: R. A. Scott), Wiley, Chichester, 2016.
Wang B., Lee Y.-M., Tcho W.-Y., Tussupbayev S., Kim S.-T., Kim Y., Seo M. S., Cho K.-B., Dede Y., Keegan B. C., Ogura T., Kim S. H., Ohta T., Baik M.-H., Ray K., Shearer J., Nam W., Nat. Commun. 2017, 8, 14839. PubMed PMC
Goetz M. K., Hill E. A., Filatov A. S., Anderson J. S., J. Am. Chem. Soc. 2018, 140, 13176–13180. PubMed
Hay-Motherwell R. S., Wilkinson G., Hussain-Bates B., Hursthouse M. B., Polyhedron 1993, 12, 2009–2012.
Poverenov E., Efremenko I., Frenkel A. I., Ben-David Y., Shimon L. J. W., Leitus G., Konstantinovski L., Martin J. M. L., Milstein D., Nature 2008, 455, 1093–1096.
Hong S., Pfaff F. F., Kwon E., Wang Y., Seo M.-S., Bill E., Ray K., Nam W., Angew. Chem. Int. Ed. 2014, 53, 10403–10407; PubMed PMC
Angew. Chem. 2014, 126, 10571–10575.
O'Halloran K. P., Zhao C., Ando N. S., Schultz A. J., Koetzle T. F., Piccoli P. M. B., Hedman B., Hodgson K. O., Bobyr E., Kirk M. L., Knottenbelt S., Depperman E. C., Stein B., Anderson T. M., Cao R., Geletii Y. V., Hardcastle K. I., Musaev D. G., Neiwert W. A., Fang X., Morokuma K., Wu S., Kogerler P., Hill C. L., Inorg. Chem. 2012, 51, 7025–7031. PubMed
Mayer J. M., Comments Inorg. Chem. 1988, 8, 125–135.
Holm R. H., Chem. Rev. 1987, 87, 1401–1449.
Gray H. B., Winkler J. R., Acc. Chem. Res. 2018, 51, 1850–1857. PubMed PMC
Mukerjee S., Skogerson K., DeGala S., Caradonna J. P., Inorg. Chim. Acta 2000, 297, 313–329.
Ray K., Heims F., Pfaff F. F., Eur. J. Inorg. Chem. 2013, 3784–3807.
Shelef M., Chem. Rev. 1995, 95, 209–225.
Das D., Pattanayak S., Singh K. K., Garaib B., Gupta S. S., Chem. Commun. 2016, 52, 11787–11790. PubMed
Nurdin L., Spasyuk D. M., Fairburn L., Piers W. E., Maron L., J. Am. Chem. Soc. 2018, 140, 16094–16105. PubMed
Ngyuen A. I., Hadt R. G., Solomon E. I., Tilley D., Chem. Sci. 2014, 5, 2874–2878. PubMed PMC
Kanan M. W., Surendranath Y., Nocera D. G., Chem. Soc. Rev. 2009, 38, 109–114. PubMed
Nguyen A. I., Ziegler M. S., Oña-Burgos P., Sturzbecher-Hohne M., Kim W., Bellone D. E., Tilley T. D., J. Am. Chem. Soc. 2015, 137, 12865–12872. PubMed
Spaltenstein E., Conry R. R., Critchlow S. C., Mayer J. M., J. Am. Chem. Soc. 1989, 111, 8741–8742.
MacBeth C. E., Golombek A. P., Young V. G., Yang C., Kuczera K., Hendrich M. P., Borovik A. S., Science 2000, 289, 938–941. PubMed
Smith J. M., Mayberry D. E., Margarit C. G., Sutter J., Wang H., Meyer K., Bontchev R. P., J. Am. Chem. Soc. 2012, 134, 6516–6519. PubMed
Matson E. M., Park Y. J., Fout A. R., J. Am. Chem. Soc. 2014, 136, 17398–17401. PubMed
Andris E., Navrátil R., Jašík J., Puri M., Costas M., L. Que, Jr. , Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400. PubMed
House J. E., Inorganic Chemistry , 2nd ed., Academic Press, New York, 2013, pp. 591–616.
Schröder D., Schwarz H., Proc. Natl. Acad. Sci. USA 2008, 105, 18114–18119. PubMed PMC
Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed
Jašíková L., Roithová J., Organometallics 2012, 31, 1935–1942.
Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed
Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 55, 3637–3641; PubMed PMC
Angew. Chem. 2016, 128, 3701–3705.
Schröder D., Roithová J., Schwarz H., Int. J. Mass Spectrom. 2006, 254, 197–201.
Yassaghi G., Andris E., Roithová J., ChemPhysChem 2017, 18, 2217–2224. PubMed
Call A., Casadevall C., Acuña-Parés F., Casitas A., Lloret-Fillol J., Chem. Sci. 2017, 8, 4739–4749. PubMed PMC
England J., Prakash J., Cranswick M. A., Mandal D., Guo Y., Münck E., Shaik S., L. Que, Jr. , Inorg. Chem. 2015, 54, 7828–7839. PubMed
Srnec M., Navrátil R., Andris E., Jašík J., Roithová J., Angew. Chem. Int. Ed. 2018, 57, 17053–17057; PubMed
Angew. Chem. 2018, 130, 17299–17303.
Andris E., Navrátil R., Jašík J., Terencio T., Srnec M., Costas M., Roithová J., J. Am. Chem. Soc. 2017, 139, 2757–2765. PubMed
Ye S., Geng C.-Y., Shaik S., Neese F., Phys. Chem. Chem. Phys. 2013, 15, 8017–8030. PubMed
Janardanan D., Wang Y., Schyman P., L. Que, Jr. , Shaik S., Angew. Chem. Int. Ed. 2010, 49, 3342–3345; PubMed PMC
Angew. Chem. 2010, 122, 3414–3417.
Schwarz H., Angew. Chem. Int. Ed. 2011, 50, 10096–10115; PubMed
Angew. Chem. 2011, 123, 10276–10297.
Luo Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007.
Roithová J., Schröder D., Chem. Rev. 2010, 110, 1170–1211. PubMed
Schröder D., Holthausen M. C., Schwarz H., J. Phys. Chem. B 2004, 108, 14407–14416.
Yassaghi G., Andris E., Roithová J., ChemPhysChem 2017, 18, 2217–2224. PubMed
Mondal B., Roy L., Neese F., Ye S., Isr. J. Chem. 2016, 56, 763–772.
Ye S., Neese F., Proc. Natl. Acad. Sci. USA 2011, 108, 1228–1233. PubMed PMC
Srnec M., Wong S. D., England J., L. Que, Jr. , Solomon E. I., Proc. Natl. Acad. Sci. USA 2012, 109, 14326–14331. PubMed PMC
Zhang R., Newcomb M., Acc. Chem. Res. 2008, 41, 468–477. PubMed PMC