M-O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes

. 2019 Jul 08 ; 58 (28) : 9619-9624. [epub] 20190611

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31083766

Grantová podpora
682275 European Research Council - International
LTAUSA17026 Ministerstvo Školství, Mládeže a Tělovýchovy
CTQ2015- 70795-P Ministerio de Industria, Energía y Turismo
2017SGR01378 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
18-13093S Grantová Agentura České Republiky

Terminal oxo complexes of late transition metals are frequently proposed reactive intermediates. However, they are scarcely known beyond Group 8. Using mass spectrometry, we prepared and characterized two such complexes: [(N4Py)CoIII (O)]+ (1) and [(N4Py)CoIV (O)]2+ (2). Infrared photodissociation spectroscopy revealed that the Co-O bond in 1 is rather strong, in accordance with its lack of chemical reactivity. On the contrary, 2 has a very weak Co-O bond characterized by a stretching frequency of ≤659 cm-1 . Accordingly, 2 can abstract hydrogen atoms from non-activated secondary alkanes. Previously, this reactivity has only been observed in the gas phase for small, coordinatively unsaturated metal complexes. Multireference ab-initio calculations suggest that 2, formally a cobalt(IV)-oxo complex, is best described as cobalt(III)-oxyl. Our results provide important data on changes to metal-oxo bonding behind the oxo wall and show that cobalt-oxo complexes are promising targets for developing highly active C-H oxidation catalysts.

Zobrazit více v PubMed

Ballhausen C. J., Gray H. B., Inorg. Chem. 1962, 1, 111–122.

Winkler J. R., Gray H. B., Struct. Bonding (Berlin) 2012, 142, 17–28.

Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed. (Ed.: P. R. Ortiz de Montellano), Kluwer Academic/Plenum Press, New York, 2005.

Guengerich F. P., ACS Catal. 2018, 8, 10964–10976. PubMed PMC

Huang X., Groves J. T., Chem. Rev. 2018, 118, 2491–2553. PubMed PMC

Abu-Omar M. M., Loaiza A., Hontzeas N., Chem. Rev. 2005, 105, 2227–2252. PubMed

Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehner N., Neese F., Skulan A. J., Yang Y.-S., Zhou J., Chem. Rev. 2000, 100, 235–349. PubMed

Hohenberger J., Ray K., Meyer K., Nat. Commun. 2012, 3, 720. PubMed

Lindhorst A. C., Haslinger S., Kühn F. E., Chem. Commun. 2015, 51, 17193–17212. PubMed

“Biomimetic High-Valent Mononuclear Nonheme Iron-Oxo Chemistry”: Klein J. E. M. N., L. Que, Jr. in Encyclopedia of Inorganic and Bioinorganic Chemistry (Ed.: R. A. Scott), Wiley, Chichester, 2016.

Wang B., Lee Y.-M., Tcho W.-Y., Tussupbayev S., Kim S.-T., Kim Y., Seo M. S., Cho K.-B., Dede Y., Keegan B. C., Ogura T., Kim S. H., Ohta T., Baik M.-H., Ray K., Shearer J., Nam W., Nat. Commun. 2017, 8, 14839. PubMed PMC

Goetz M. K., Hill E. A., Filatov A. S., Anderson J. S., J. Am. Chem. Soc. 2018, 140, 13176–13180. PubMed

Hay-Motherwell R. S., Wilkinson G., Hussain-Bates B., Hursthouse M. B., Polyhedron 1993, 12, 2009–2012.

Poverenov E., Efremenko I., Frenkel A. I., Ben-David Y., Shimon L. J. W., Leitus G., Konstantinovski L., Martin J. M. L., Milstein D., Nature 2008, 455, 1093–1096.

Hong S., Pfaff F. F., Kwon E., Wang Y., Seo M.-S., Bill E., Ray K., Nam W., Angew. Chem. Int. Ed. 2014, 53, 10403–10407; PubMed PMC

Angew. Chem. 2014, 126, 10571–10575.

O'Halloran K. P., Zhao C., Ando N. S., Schultz A. J., Koetzle T. F., Piccoli P. M. B., Hedman B., Hodgson K. O., Bobyr E., Kirk M. L., Knottenbelt S., Depperman E. C., Stein B., Anderson T. M., Cao R., Geletii Y. V., Hardcastle K. I., Musaev D. G., Neiwert W. A., Fang X., Morokuma K., Wu S., Kogerler P., Hill C. L., Inorg. Chem. 2012, 51, 7025–7031. PubMed

Mayer J. M., Comments Inorg. Chem. 1988, 8, 125–135.

Holm R. H., Chem. Rev. 1987, 87, 1401–1449.

Gray H. B., Winkler J. R., Acc. Chem. Res. 2018, 51, 1850–1857. PubMed PMC

Mukerjee S., Skogerson K., DeGala S., Caradonna J. P., Inorg. Chim. Acta 2000, 297, 313–329.

Ray K., Heims F., Pfaff F. F., Eur. J. Inorg. Chem. 2013, 3784–3807.

Shelef M., Chem. Rev. 1995, 95, 209–225.

Das D., Pattanayak S., Singh K. K., Garaib B., Gupta S. S., Chem. Commun. 2016, 52, 11787–11790. PubMed

Nurdin L., Spasyuk D. M., Fairburn L., Piers W. E., Maron L., J. Am. Chem. Soc. 2018, 140, 16094–16105. PubMed

Ngyuen A. I., Hadt R. G., Solomon E. I., Tilley D., Chem. Sci. 2014, 5, 2874–2878. PubMed PMC

Kanan M. W., Surendranath Y., Nocera D. G., Chem. Soc. Rev. 2009, 38, 109–114. PubMed

Nguyen A. I., Ziegler M. S., Oña-Burgos P., Sturzbecher-Hohne M., Kim W., Bellone D. E., Tilley T. D., J. Am. Chem. Soc. 2015, 137, 12865–12872. PubMed

Spaltenstein E., Conry R. R., Critchlow S. C., Mayer J. M., J. Am. Chem. Soc. 1989, 111, 8741–8742.

MacBeth C. E., Golombek A. P., Young V. G., Yang C., Kuczera K., Hendrich M. P., Borovik A. S., Science 2000, 289, 938–941. PubMed

Smith J. M., Mayberry D. E., Margarit C. G., Sutter J., Wang H., Meyer K., Bontchev R. P., J. Am. Chem. Soc. 2012, 134, 6516–6519. PubMed

Matson E. M., Park Y. J., Fout A. R., J. Am. Chem. Soc. 2014, 136, 17398–17401. PubMed

Andris E., Navrátil R., Jašík J., Puri M., Costas M., L. Que, Jr. , Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400. PubMed

House J. E., Inorganic Chemistry , 2nd ed., Academic Press, New York, 2013, pp. 591–616.

Schröder D., Schwarz H., Proc. Natl. Acad. Sci. USA 2008, 105, 18114–18119. PubMed PMC

Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed

Jašíková L., Roithová J., Organometallics 2012, 31, 1935–1942.

Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed

Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 55, 3637–3641; PubMed PMC

Angew. Chem. 2016, 128, 3701–3705.

Schröder D., Roithová J., Schwarz H., Int. J. Mass Spectrom. 2006, 254, 197–201.

Yassaghi G., Andris E., Roithová J., ChemPhysChem 2017, 18, 2217–2224. PubMed

Call A., Casadevall C., Acuña-Parés F., Casitas A., Lloret-Fillol J., Chem. Sci. 2017, 8, 4739–4749. PubMed PMC

England J., Prakash J., Cranswick M. A., Mandal D., Guo Y., Münck E., Shaik S., L. Que, Jr. , Inorg. Chem. 2015, 54, 7828–7839. PubMed

Srnec M., Navrátil R., Andris E., Jašík J., Roithová J., Angew. Chem. Int. Ed. 2018, 57, 17053–17057; PubMed

Angew. Chem. 2018, 130, 17299–17303.

Andris E., Navrátil R., Jašík J., Terencio T., Srnec M., Costas M., Roithová J., J. Am. Chem. Soc. 2017, 139, 2757–2765. PubMed

Ye S., Geng C.-Y., Shaik S., Neese F., Phys. Chem. Chem. Phys. 2013, 15, 8017–8030. PubMed

Janardanan D., Wang Y., Schyman P., L. Que, Jr. , Shaik S., Angew. Chem. Int. Ed. 2010, 49, 3342–3345; PubMed PMC

Angew. Chem. 2010, 122, 3414–3417.

Schwarz H., Angew. Chem. Int. Ed. 2011, 50, 10096–10115; PubMed

Angew. Chem. 2011, 123, 10276–10297.

Luo Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007.

Roithová J., Schröder D., Chem. Rev. 2010, 110, 1170–1211. PubMed

Schröder D., Holthausen M. C., Schwarz H., J. Phys. Chem. B 2004, 108, 14407–14416.

Yassaghi G., Andris E., Roithová J., ChemPhysChem 2017, 18, 2217–2224. PubMed

Mondal B., Roy L., Neese F., Ye S., Isr. J. Chem. 2016, 56, 763–772.

Ye S., Neese F., Proc. Natl. Acad. Sci. USA 2011, 108, 1228–1233. PubMed PMC

Srnec M., Wong S. D., England J., L. Que, Jr. , Solomon E. I., Proc. Natl. Acad. Sci. USA 2012, 109, 14326–14331. PubMed PMC

Zhang R., Newcomb M., Acc. Chem. Res. 2008, 41, 468–477. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...