Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31107861
PubMed Central
PMC6544328
DOI
10.1371/journal.pcbi.1007033
PII: PCOMPBIOL-D-18-01979
Knihovny.cz E-zdroje
- MeSH
- cholesterol metabolismus MeSH
- konformace proteinů MeSH
- kyseliny dokosahexaenové chemie metabolismus MeSH
- lidé MeSH
- membránové mikrodomény chemie metabolismus MeSH
- membránové proteiny chemie metabolismus MeSH
- modely neurologické MeSH
- molekulární modely MeSH
- mozek metabolismus MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- nervové receptory chemie metabolismus MeSH
- počítačová simulace MeSH
- receptor adenosinový A2A chemie metabolismus MeSH
- receptory spřažené s G-proteiny chemie metabolismus MeSH
- signální transdukce MeSH
- termodynamika MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADORA2A protein, human MeSH Prohlížeč
- cholesterol MeSH
- kyseliny dokosahexaenové MeSH
- membránové proteiny MeSH
- nenasycené mastné kyseliny MeSH
- receptor adenosinový A2A MeSH
- receptory spřažené s G-proteiny MeSH
G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling.
Computational Physics Laboratory Tampere University Tampere Finland
Department of Physics University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Sezgin E, Levental I, Mayor S, Eggeling C. The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–374. 10.1038/nrm.2017.16 PubMed DOI PMC
Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid Raft Microdomains and Neurotransmitter Signalling. Nat Rev Neurosci. 2007;8(2):128–140. 10.1038/nrn2059 PubMed DOI
Oates J, Watts A. Uncovering the Intimate Relationship between Lipids, Cholesterol and GPCR Activation. Curr Opin Struct Biol. 2011;21(6):802–807. 10.1016/j.sbi.2011.09.007 PubMed DOI
Gimpl G. Interaction of G Protein Coupled Receptors and Cholesterol. Chem Phys Lipids. 2016;199:61–73. 10.1016/j.chemphyslip.2016.04.006 PubMed DOI
Casiraghi M, Damian M, Lescop E, Point E, Moncoq K, Morellet N, et al. Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. J Am Chem Soc. 2016;138(35):11170–11175. 10.1021/jacs.6b04432 PubMed DOI
Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W, Müller DJ, et al. Mechanism of Allosteric Regulation of β2-Adrenergic Receptor by Cholesterol. eLife. 2016;5:e18432 10.7554/eLife.18432 PubMed DOI PMC
Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, et al. Membrane Cholesterol Access into a G-Protein-Coupled Receptor. Nat Commun. 2017;8:14505 10.1038/ncomms14505 PubMed DOI PMC
Maccarrone M, Bernardi G, Agrò aF, Centonze D. Cannabinoid Receptor Signalling in Neurodegenerative Diseases: A Potential Role for Membrane Fluidity Disturbance. Br J Pharmacol. 2011;163(7):1379–1390. 10.1111/j.1476-5381.2011.01277.x PubMed DOI PMC
Innis SM. Dietary Omega 3 Fatty Acids and the Developing Brain. Brain Res. 2008;1237:35–43. 10.1016/j.brainres.2008.08.078 PubMed DOI
Martín V, Fabelo N, Santpere G, Puig B, Marín R, Ferrer I, et al. Lipid Alterations in Lipid Rafts from Alzheimer’s Disease Human Brain Cortex. J Alzheimers Dis. 2010;19(2):489–502. 10.3233/JAD-2010-1242 PubMed DOI
Fabelo N, Martín V, Santpere G, Marín R, Torrent L, Ferrer I, et al. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease. Mol Med. 2011;17(9):1107–1118. 10.2119/molmed.2011.00119 PubMed DOI PMC
Duraisamy Y, Lambert D, O’Neill CA, Padfield PJ. Differential Incorporation of Docosahexaenoic Acid into Distinct Cholesterol-Rich Membrane Raft Domains. Biochem Biophys Res Commun. 2007;360(4):885–890. 10.1016/j.bbrc.2007.06.152 PubMed DOI
Konyakhina TM, Feigenson GW. Phase Diagram of a Polyunsaturated Lipid Mixture: Brain Sphingomyelin/1-Stearoyl-2-Docosahexaenoyl-Sn-Glycero-3-Phosphocholine/Cholesterol. BBA-Biomembranes. 2016;1858(1):153–161. 10.1016/j.bbamem.2015.10.016 PubMed DOI PMC
Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain Membrane Lipids in Major Depression and Anxiety Disorders. BBA-Mol Cell Biol L. 2015;1851(8):1052–1065. 10.1016/j.bbalip.2014.12.014 PubMed DOI
Mitchell DC, Straume M, Litman BJ. Role of sn-1-Saturated,sn-2-Polyunsaturated Phospholipids in Control of Membrane Receptor Conformational Equilibrium: Effects of Cholesterol and Acyl Chain Unsaturation on the Metarhodopsin I—Metarhodopsin II Equilibrium. Biochemistry. 1992;31:662–670. 10.1021/bi00118a005 PubMed DOI
Mitchell DC, Niu SL, Litman BJ. Enhancement of G Protein-Coupled Signaling by DHA Phospholipids. Lipids. 2003;38(4):437–443. 10.1007/s11745-003-1081-1 PubMed DOI
Bennett MP, Mitchell DC. Regulation of Membrane Proteins by Dietary Lipids: Effects of Cholesterol and Docosahexaenoic Acid Acyl Chain-Containing Phospholipids on Rhodopsin Stability and Function. Biophys J. 2008;95(3):1206–1216. 10.1529/biophysj.107.122788 PubMed DOI PMC
Feller SE, Gawrisch K, Woolf TB. Rhodopsin Exhibits a Preference for Solvation by Polyunsaturated Docosohexaenoic Acid. J Am Chem Soc. 2003;125(15):4434–4435. 10.1021/ja0345874 PubMed DOI
Grossfield A, Feller SE, Pitman MC. Contribution of Omega-3 Fatty Acids to the Thermodynamics of Membrane Protein Solvation. J Phys Chem B. 2006;110(18):8907–8909. 10.1021/jp060405r PubMed DOI
Pitman MC, Grossfield A, Suits F, Feller SE. Role of Cholesterol and Polyunsaturated Chains in Lipid-Protein Interactions: Molecular Dynamics Simulation of Rhodopsin in a Realistic Membrane Environment. J Am Chem Soc. 2005;127(13):4576–4577. 10.1021/ja042715y PubMed DOI
Grossfield A, Feller SE, Pitman MC. A Role for Direct Interactions in the Modulation of Rhodopsin by ω-3 Polyunsaturated Lipids. Proc Natl Acad Sci USA. 2006;103(13):4888–4893. 10.1073/pnas.0508352103 PubMed DOI PMC
Horn JN, Kao TC, Grossfield A. Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin In: G Protein-Coupled Receptors—Modeling and Simulation. Springer; 2014. p. 75–94. PubMed PMC
Guixà-González R, Javanainen M, Gómez-Soler M, Cordobilla B, Domingo JC, Sanz F, et al. Membrane Omega-3 Fatty Acids Modulate the Oligomerisation Kinetics of Adenosine A2A and Dopamine D2 Receptors. Sci Rep. 2016;6:19839 10.1038/srep19839 PubMed DOI PMC
Chen JF, Eltzschig HK, Fredholm BB. Adenosine Receptors as Drug Targets–What Are the Challenges? Nat Rev Drug Discov. 2013;12(4):265–286. 10.1038/nrd3955 PubMed DOI PMC
Jorg M, Scammells P, Capuano B. The Dopamine D2 and Adenosine A2A Receptors: Past, Present and Future Trends for the Treatment of Parkinson’s Disease. Curr Med Chem. 2014;21(27):3188–3210. 10.2174/1389200215666140217110716 PubMed DOI
Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science. 2012;337(6091):232–236. 10.1126/science.1219218 PubMed DOI PMC
Lee JY, Lyman E. Predictions for Cholesterol Interaction Sites on the A2A Adenosine Receptor. J Am Chem Soc. 2012;134(40):16512–16515. 10.1021/ja307532d PubMed DOI PMC
Rouviere E, Arnarez C, Yang L, Lyman E. Identification of Two New Cholesterol Interaction Sites on the A2A Adenosine Receptor. Biophys J. 2017;113(11):2415–2424. 10.1016/j.bpj.2017.09.027 PubMed DOI PMC
Lam RS, Nahirney D, Duszyk M. Cholesterol-Dependent Regulation of Adenosine A2A Receptor-Mediated Anion Secretion in Colon Epithelial Cells. Exp Cell Res. 2009;315(17):3028–3035. 10.1016/j.yexcr.2009.06.005 PubMed DOI
Thurner P, Gsandtner I, Kudlacek O, Choquet D, Nanoff C, Freissmuth M, et al. A Two-State Model for the Diffusion of the A2A Adenosine Receptor in Hippocampal Neurons: Agonist-Induced Switch to Slow Mobility is Modified by Synapse-Associated Protein 102 (SAP102). J Biol Chem. 2014;289(13):9263–9274. 10.1074/jbc.M113.505685 PubMed DOI PMC
Lasley RD. Adenosine Receptors and Membrane Microdomains. BBA-Biomembranes. 2011;1808(5):1284–1289. 10.1016/j.bbamem.2010.09.019 PubMed DOI PMC
Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA, Levental KR, et al. Structural Determinants and Functional Consequences of Protein Affinity for Membrane Rafts. Nat Commun. 2017;8(1):1219 10.1038/s41467-017-01328-3 PubMed DOI PMC
Schlebach JP, Barrett PJ, Day CA, Kim JH, Kenworthy AK, Sanders CR. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles. Biochemistry. 2016;55(7):985–988. 10.1021/acs.biochem.5b01154 PubMed DOI PMC
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J Phys Chem B. 2007;111(27):7812–7824. 10.1021/jp071097f PubMed DOI
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-grained Force Field: Extension to Proteins. J Chem Theory Comput. 2008;4(5):819–834. 10.1021/ct700324x PubMed DOI
de Jong DH, Singh G, Bennett WD, Arnarez C, Wassenaar TA, Schäfer LV, et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J Chem Theory Comput. 2012;9(1):687–697. 10.1021/ct300646g PubMed DOI
Langelier B, Linard A, Bordat C, Lavialle M, Heberden C. Long Chain-polyunsaturated Fatty Acids Modulate Membrane Phospholipid Composition and Protein Localization in Lipid Rafts of Neural Stem Cell Cultures. J Cell Biochem. 2010;110(6):1356–1364. 10.1002/jcb.22652 PubMed DOI
Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P, Huang G, et al. Phase Studies of Model Biomembranes: Complex Behavior of DSPC/DOPC/cholesterol. BBA-Biomembranes. 2007;1768(11):2764–2776. 10.1016/j.bbamem.2007.07.008 PubMed DOI PMC
Mouritsen O, Bloom M. Mattress Model of Lipid–Protein Interactions in Membranes. Biophys J. 1984;46(2):141–153. 10.1016/S0006-3495(84)84007-2 PubMed DOI PMC
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM Database and PPM Web Server: Resources for Positioning of Proteins in Membranes. Nucleic Acids Res. 2011;40(D1):D370–D376. 10.1093/nar/gkr703 PubMed DOI PMC
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J Phys Chem B. 2010;114(23):7830–7843. 10.1021/jp101759q PubMed DOI PMC
Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J Chem Theory Comput. 2012;8(9):3257–3273. 10.1021/ct300400x PubMed DOI PMC
Soubias O, Teague WE, Gawrisch K. Evidence for Specificity in Lipid–Rhodopsin Interactions. J Biol Chem. 2006;281(44):33233–33241. 10.1074/jbc.M603059200 PubMed DOI
MacKenzie KR, Prestegard JH, Engelman DM. A Transmembrane Helix Dimer: Structure and Implications. Science. 1997;276(5309):131–133. 10.1126/science.276.5309.131 PubMed DOI
Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, et al. The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist. Science. 2008;322(5905):1211–1217. 10.1126/science.1164772 PubMed DOI PMC
Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, et al. The Crystal Structure of Mouse VDAC1 at 2.3 Å Resolution Reveals Mechanistic Insights into Metabolite Gating. Proc Natl Acad Sci USA. 2008;105(46):17742–17747. 10.1073/pnas.0809634105 PubMed DOI PMC
Lewis M, Rees DC. Fractal Surfaces of Proteins. Science. 1985;230(4730):1163–1165. 10.1126/science.4071040 PubMed DOI
Pettit FK, Bowie JU. Protein Surface Roughness and Small Molecular Binding Sites. J Mol Biol. 1999;285(4):1377–1382. 10.1006/jmbi.1998.2411 PubMed DOI
Banerji A, Navare C. Fractal Nature of Protein Surface Roughness: a Note on Quantification of Change of Surface Roughness in Active Sites, Before and After Binding. J Mol Recognit. 2013;26(5):201–214. 10.1002/jmr.2264 PubMed DOI
Kaczor AA, Guixà-González R, Carrió P, Obiol-Pardo C, Pastor M, Selent J. Fractal Dimension as a Measure of Surface Roughness of G Protein-Coupled Receptors: Implications for Structure and Function. J Mol Model. 2012;18(9):4465–4475. 10.1007/s00894-012-1431-2 PubMed DOI PMC
Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, et al. Lipid–Protein Interactions are Unique Fingerprints for Membrane Proteins. ACS Cent Sci. 2018;4(6):709–717. 10.1021/acscentsci.8b00143 PubMed DOI PMC
Beaulieu JM, Gainetdinov RR. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol Rev. 2011;63(1):182–217. 10.1124/pr.110.002642 PubMed DOI
Ximenes da Silva A, Lavialle F, Gendrot G, Guesnet P, Alessandri JM, Lavialle M. Glucose Transport and Utilization Are Altered in the Brain of Rats Deficient in N-3 Polyunsaturated Fatty Acids. J Neurochem. 2002;81(6):1328–1337. 10.1046/j.1471-4159.2002.00932.x PubMed DOI
Pifferi F, Jouin M, Alessandri J, Haedke U, Roux F, Perriere N, et al. N-3 Fatty Acids Modulate Brain Glucose Transport in Endothelial Cells of the Blood–Brain Barrier. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):279–286. 10.1016/j.plefa.2007.10.011 PubMed DOI
Schäfer LV, de Jong DH, Holt A, Rzepiela AJ, de Vries AH, Poolman B, et al. Lipid Packing Drives the Segregation of Transmembrane Helices into Disordered Lipid Domains in Model Membranes. Proc Natl Acad Sci USA. 2011;108(4):1343–1348. 10.1073/pnas.1009362108 PubMed DOI PMC
Uppamoochikkal P, Tristram-Nagle S, Nagle JF. Orientation of Tie-Lines in the Phase Diagram of Dopc/Dppc/Cholesterol Model Biomembranes. Langmuir. 2010;26(22):17363–17368. 10.1021/la103024f PubMed DOI PMC
Dupuy AD, Engelman DM. Protein Area Occupancy at the Center of the Red Blood Cell Membrane. Proc Natl Acad Sci USA. 2008;105(8):2848–2852. 10.1073/pnas.0712379105 PubMed DOI PMC
Rosholm KR, Leijnse N, Mantsiou A, Tkach V, Pedersen SL, Wirth VF, et al. Membrane Curvature Regulates Ligand-specific Membrane Sorting of GPCRs in Living Cells. Nat Chem Biol. 2017;13(7):724 10.1038/nchembio.2372 PubMed DOI
du Bois TM, Deng C, Huang XF. Membrane Phospholipid Composition, Alterations in Neurotransmitter Systems and Schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(6):878–888. 10.1016/j.pnpbp.2005.04.034 PubMed DOI
Bousquet M, Calon F, Cicchetti F. Impact of Omega-3 Fatty Acids in Parkinson’s Disease. Ageing Res Rev. 2011;10(4):453–463. 10.1016/j.arr.2011.03.001 PubMed DOI
Bazinet RP, Layé S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat Rev Neurosci. 2014;15(12):771–785. 10.1038/nrn3820 PubMed DOI
Periole X, Cavalli M, Marrink SJ, Ceruso MA. Combining an Elastic Network with a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. J Chem Theory Comput. 2009;5(9):2531–2543. 10.1021/ct9002114 PubMed DOI
Bennett CH. Efficient Estimation of Free Energy Differences from Monte Carlo Data. J Comput Phys. 1976;22(2):245–268. 10.1016/0021-9991(76)90078-4 DOI
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, et al. Crystal Structure of the Human Glucose Transporter GLUT1. Nature. 2014;510(7503):121–125. 10.1038/nature13306 PubMed DOI
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1:19–25. 10.1016/j.softx.2015.06.001 DOI
de Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ. Martini Straight: Boosting Performance Using a Shorter Cutoff and GPUs. Comput Phys Comm. 2016;199:1–7. 10.1016/j.cpc.2015.09.014 DOI
Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP. Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. J Chem Theory Comput. 2014;10(2):676–690. 10.1021/ct400617g PubMed DOI
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2015;12(1):405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC