PrankWeb: a web server for ligand binding site prediction and visualization
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31114880
PubMed Central
PMC6602436
DOI
10.1093/nar/gkz424
PII: 5494740
Knihovny.cz E-zdroje
- MeSH
- benchmarking MeSH
- datové soubory jako téma MeSH
- interakční proteinové domény a motivy MeSH
- internet MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lidé MeSH
- ligandy MeSH
- proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- software * MeSH
- strojové učení * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- proteiny MeSH
PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.
Department of Cell Biology Faculty of Science Charles University Czech Republic
Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg
Zobrazit více v PubMed
Skolnick J., Fetrow J.S., Kolinski A.. Structural genomics and its importance for gene function analysis. Nat. Biotechnol. 2000; 18:283. PubMed
Schmidtke P., Le Guilloux V., Maupetit J., Tufféry P.. Fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010; 38:W582–W589. PubMed PMC
Hernandez M., Ghersi D., Sanchez R.. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res. 2009; 37:W413–W416. PubMed PMC
Capra J.A., Laskowski R.A., Thornton J.M., Singh M., Funkhouser T.A.. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput. Biol. 2009; 5:e1000585. PubMed PMC
Yu J., Zhou Y., Tanaka I., Yao M.. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics. 2010; 26:46–52. PubMed
Zhang Z., Li Y., Lin B., Schroeder M., Huang B.. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011; 27:2083. PubMed
Ngan C.-H., Hall D.R., Zerbe B.S., Grove L.E., Kozakov D., Vajda S.. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics. 2012; 28:286–287. PubMed PMC
Gao J., Zhang Q., Liu M., Zhu L., Wu D., Cao Z., Zhu R.. bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming. J. Cheminf. 2016; 8:38. PubMed PMC
Tully S.P., Stitt T.M., Caldwell R.D., Hardock B.J., Hanson R.M., Maslak P.. Interactive web-based pointillist visualization of hydrogenic orbitals using jmol. J. Chem. Educ. 2013; 90:129–131.
Hanson R.M., Prilusky J., Renjian Z., Nakane T., Sussman J.L.. JSmol and the next-generation web-based representation of 3 D molecular structure as applied to proteopedia. Isr. J. Chem. 2013; 53:207–216.
Wass M.N., Kelley L.A., Sternberg M.J.. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010; 38:W469–W473. PubMed PMC
Roy A., Yang J., Zhang Y.. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012; 40:W471–W477. PubMed PMC
Zhang C., Freddolino P.L., Zhang Y.. COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res. 2017; 45:W291–W299. PubMed PMC
Yang J., Roy A., Zhang Y.. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013; 29:2588–2595. PubMed PMC
Jian J.-W., Elumalai P., Pitti T., Wu C.Y., Tsai K.-C., Chang J.-Y., Peng H.-P., Yang A.-S.. Predicting ligand binding sites on protein surfaces by 3-dimensional probability density distributions of interacting atoms. PLoS One. 2016; 11:e0160315. PubMed PMC
Toti D., Viet Hung L., Tortosa V., Brandi V., Polticelli F.. LIBRA-WA: a web application for ligand binding site detection and protein function recognition. Bioinformatics. 2017; 34:878–880. PubMed PMC
Hartshorn M.J. AstexViewer TM†: a visualisation aid for structure-based drug design. J. Comput. Aid. Mol. Des. 2002; 16:871–881. PubMed
Sehnal D., Deshpande M., Vareková R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J.. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed
Rose A.S., Hildebrand P.W.. NGL viewer: a web application for molecular visualization. Nucleic Acids Res. 2015; 43:W576. PubMed PMC
Rose A.S., Bradley A.R., Valasatava Y., Duarte J.M., Prlić A., Rose P.W.. Web-based molecular graphics for large complexes. Proc. 21st Int. Conf. Web3D Technology. 2016; NY: ACM; 185–186. PubMed
Biasini M. pv: v1.8.1. 2015; 10.5281/zenodo.20980. DOI
Volkamer A., Griewel A., Grombacher T., Rarey M.. Analyzing the topology of active sites: On the prediction of pockets and subpockets. J. Chem. Inf. Model. 2010; 50:2041–2052. PubMed
Jiménez J., Doerr S., Martínez-Rosell G., Rose A.S., Fabritiis G.D.. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics. 2017; 33:3036–3042. PubMed
Heo L., Shin W.-H., Lee M.S., Seok C.. GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res. 2014; 42:W210–W214. PubMed PMC
Krivák R., Hoksza D.. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminf. 2018; 10:39. PubMed PMC
Sedova M., Jaroszewski L., Godzik A.. Protael: protein data visualization library for the web. Bioinformatics. 2016; 32:602–604. PubMed PMC
Feinstein W.P., Brylinski M.. eFindSite: Enhanced Fingerprint-Based virtual screening against predicted ligand binding sites in protein models. Mol. Inf. 2014; 33:135–150. PubMed
Ho T.K. Random decision forests. Proc. 3rd Int. Conf. Document Analysis and Recognition. 1995; 1:IEEE; 278–282.
Chen K., Mizianty M., Gao J., Kurgan L.. A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds. Structure. 2011; 19:613–621. PubMed
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The protein data bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC
Capra J.A., Singh M.. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23:1875–1882. PubMed
Joosten R.P., te Beek T.A., Krieger E., Hekkelman M.L., Hooft R.W., Schneider R., Sander C., Vriend G.. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011; 39:D411. PubMed PMC
The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018; 47:D506–D515. PubMed PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402. PubMed PMC
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792. PubMed PMC
Li W., Godzik A.. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658. PubMed
WildFly Homepage · WildFly http://wildfly.org/.
Krivák R., Jendele L., Hoksza D.. Peptide-Binding site prediction from protein structure via points on the solvent accessible surface. Proc. 2019 ACM Int. Conf. Bioinformatics. 2018; ACM; 645–650.