PrankWeb: a web server for ligand binding site prediction and visualization

. 2019 Jul 02 ; 47 (W1) : W345-W349.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31114880

PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.

Zobrazit více v PubMed

Skolnick J., Fetrow J.S., Kolinski A.. Structural genomics and its importance for gene function analysis. Nat. Biotechnol. 2000; 18:283. PubMed

Schmidtke P., Le Guilloux V., Maupetit J., Tufféry P.. Fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010; 38:W582–W589. PubMed PMC

Hernandez M., Ghersi D., Sanchez R.. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res. 2009; 37:W413–W416. PubMed PMC

Capra J.A., Laskowski R.A., Thornton J.M., Singh M., Funkhouser T.A.. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput. Biol. 2009; 5:e1000585. PubMed PMC

Yu J., Zhou Y., Tanaka I., Yao M.. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics. 2010; 26:46–52. PubMed

Zhang Z., Li Y., Lin B., Schroeder M., Huang B.. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011; 27:2083. PubMed

Ngan C.-H., Hall D.R., Zerbe B.S., Grove L.E., Kozakov D., Vajda S.. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics. 2012; 28:286–287. PubMed PMC

Gao J., Zhang Q., Liu M., Zhu L., Wu D., Cao Z., Zhu R.. bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming. J. Cheminf. 2016; 8:38. PubMed PMC

Tully S.P., Stitt T.M., Caldwell R.D., Hardock B.J., Hanson R.M., Maslak P.. Interactive web-based pointillist visualization of hydrogenic orbitals using jmol. J. Chem. Educ. 2013; 90:129–131.

Hanson R.M., Prilusky J., Renjian Z., Nakane T., Sussman J.L.. JSmol and the next-generation web-based representation of 3 D molecular structure as applied to proteopedia. Isr. J. Chem. 2013; 53:207–216.

Wass M.N., Kelley L.A., Sternberg M.J.. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 2010; 38:W469–W473. PubMed PMC

Roy A., Yang J., Zhang Y.. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012; 40:W471–W477. PubMed PMC

Zhang C., Freddolino P.L., Zhang Y.. COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res. 2017; 45:W291–W299. PubMed PMC

Yang J., Roy A., Zhang Y.. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013; 29:2588–2595. PubMed PMC

Jian J.-W., Elumalai P., Pitti T., Wu C.Y., Tsai K.-C., Chang J.-Y., Peng H.-P., Yang A.-S.. Predicting ligand binding sites on protein surfaces by 3-dimensional probability density distributions of interacting atoms. PLoS One. 2016; 11:e0160315. PubMed PMC

Toti D., Viet Hung L., Tortosa V., Brandi V., Polticelli F.. LIBRA-WA: a web application for ligand binding site detection and protein function recognition. Bioinformatics. 2017; 34:878–880. PubMed PMC

Hartshorn M.J. AstexViewer TM†: a visualisation aid for structure-based drug design. J. Comput. Aid. Mol. Des. 2002; 16:871–881. PubMed

Sehnal D., Deshpande M., Vareková R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J.. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed

Rose A.S., Hildebrand P.W.. NGL viewer: a web application for molecular visualization. Nucleic Acids Res. 2015; 43:W576. PubMed PMC

Rose A.S., Bradley A.R., Valasatava Y., Duarte J.M., Prlić A., Rose P.W.. Web-based molecular graphics for large complexes. Proc. 21st Int. Conf. Web3D Technology. 2016; NY: ACM; 185–186. PubMed

Biasini M. pv: v1.8.1. 2015; 10.5281/zenodo.20980. DOI

Volkamer A., Griewel A., Grombacher T., Rarey M.. Analyzing the topology of active sites: On the prediction of pockets and subpockets. J. Chem. Inf. Model. 2010; 50:2041–2052. PubMed

Jiménez J., Doerr S., Martínez-Rosell G., Rose A.S., Fabritiis G.D.. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics. 2017; 33:3036–3042. PubMed

Heo L., Shin W.-H., Lee M.S., Seok C.. GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res. 2014; 42:W210–W214. PubMed PMC

Krivák R., Hoksza D.. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminf. 2018; 10:39. PubMed PMC

Sedova M., Jaroszewski L., Godzik A.. Protael: protein data visualization library for the web. Bioinformatics. 2016; 32:602–604. PubMed PMC

Feinstein W.P., Brylinski M.. eFindSite: Enhanced Fingerprint-Based virtual screening against predicted ligand binding sites in protein models. Mol. Inf. 2014; 33:135–150. PubMed

Ho T.K. Random decision forests. Proc. 3rd Int. Conf. Document Analysis and Recognition. 1995; 1:IEEE; 278–282.

Chen K., Mizianty M., Gao J., Kurgan L.. A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds. Structure. 2011; 19:613–621. PubMed

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.. The protein data bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC

Capra J.A., Singh M.. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23:1875–1882. PubMed

Joosten R.P., te Beek T.A., Krieger E., Hekkelman M.L., Hooft R.W., Schneider R., Sander C., Vriend G.. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011; 39:D411. PubMed PMC

The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018; 47:D506–D515. PubMed PMC

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389–3402. PubMed PMC

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792. PubMed PMC

Li W., Godzik A.. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658. PubMed

WildFly Homepage · WildFly http://wildfly.org/.

Krivák R., Jendele L., Hoksza D.. Peptide-Binding site prediction from protein structure via points on the solvent accessible surface. Proc. 2019 ACM Int. Conf. Bioinformatics. 2018; ACM; 645–650.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...