PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35609995
PubMed Central
PMC10353840
DOI
10.1093/nar/gkac389
PII: 6591527
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů MeSH
- internet MeSH
- ligandy MeSH
- proteinové domény MeSH
- proteiny * chemie MeSH
- software * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- proteiny * MeSH
Knowledge of protein-ligand binding sites (LBSs) enables research ranging from protein function annotation to structure-based drug design. To this end, we have previously developed a stand-alone tool, P2Rank, and the web server PrankWeb (https://prankweb.cz/) for fast and accurate LBS prediction. Here, we present significant enhancements to PrankWeb. First, a new, more accurate evolutionary conservation estimation pipeline based on the UniRef50 sequence database and the HMMER3 package is introduced. Second, PrankWeb now allows users to enter UniProt ID to carry out LBS predictions in situations where no experimental structure is available by utilizing the AlphaFold model database. Additionally, a range of minor improvements has been implemented. These include the ability to deploy PrankWeb and P2Rank as Docker containers, support for the mmCIF file format, improved public REST API access, or the ability to batch download the LBS predictions for the whole PDB archive and parts of the AlphaFold database.
Zobrazit více v PubMed
Konc J., Lešnik S., Janežič D. Modeling enzyme-ligand binding in drug discovery. J. Cheminform. 2015; 7:48. PubMed PMC
Imamura A., Okada T., Mase H., Otani T., Kobayashi T., Tamura M., Kubata B.K., Inoue K., Rambo R.P., Uchiyama S. et al. . Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase through cystathionine-β-synthase domain. Nat. Commun. 2020; 11:1837. PubMed PMC
Krivák R., Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminf. 2018; 10:39. PubMed PMC
Mylonas S.K., Axenopoulos A., Daras P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics. 2021; 37:1681–1690. PubMed
Jendele L., Krivak R., Skoda P., Novotny M., Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019; 47:W345–W349. PubMed PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucleic Acids Res. 2000; 28:235–242. PubMed PMC
Mitchell A.L., Almeida A., Beracochea M., Boland M., Burgin J., Cochrane G., Crusoe M.R., Kale V., Potter S.C., Richardson L.J. et al. . MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 2020; 48:D570–D578. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A. et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A. et al. . AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022; 50:D439–D444. PubMed PMC
Capra J.A., Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23:1875–1882. PubMed
Vymětal J., Jakubec D., Galgonek J., Vondrášek J. Amino Acid Interactions (INTAA) web server v2.0: a single service for computation of energetics and conservation in biomolecular 3D structures. Nucleic Acids Res. 2021; 49:W15–W20. PubMed PMC
Suzek B.E., Wang Y., Huang H., McGarvey P.B., Wu C.H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015; 31:926–932. PubMed PMC
Gerstein M., Sonnhammer E.L., Chothia C. Volume changes in protein evolution. J. Mol. Biol. 1994; 236:1067–1078. PubMed
Yang D., Zhou Q., Labroska V., Qin S., Darbalaei S., Wu Y., Yuliantie E., Xie L., Tao H., Cheng J. et al. . G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct. Target Ther. 2021; 6:7. PubMed PMC
Ariza A.C., Deen P.M., Robben J.H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. (Lausanne). 2012; 3:22. PubMed PMC
Zhang K., Zhang J., Gao Z.G., Zhang D., Zhu L., Han G.W., Moss S.M., Paoletta S., Kiselev E., Lu W. et al. . Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014; 509:115–118. PubMed PMC